Suppr超能文献

一个水稻谷氨酰-tRNA 合成酶调控早期花粉囊细胞分裂和模式形成。

A Rice Glutamyl-tRNA Synthetase Modulates Early Anther Cell Division and Patterning.

机构信息

School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia.

Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Plant Physiol. 2018 Jun;177(2):728-744. doi: 10.1104/pp.18.00110. Epub 2018 May 2.

Abstract

Aminoacyl-tRNA synthetases (aaRSs) have housekeeping roles in protein synthesis, but little is known about how these aaRSs are involved in organ development. Here, we report that a rice () glutamyl-tRNA synthetase (OsERS1) maintains proper somatic cell organization and limits the overproliferation of male germ cells during early anther development. The expression of is specifically detectable in meristematic layer 2-derived cells of the early anther, and anthers exhibit overproliferation and disorganization of layer 2-derived cells, producing fused lobes and extra germ cells in early anthers. The conserved biochemical function of OsERS1 in ligating glutamate to tRNA is enhanced by its cofactor aaRS OsARC. Furthermore, metabolomics profiling revealed that OsERS1 is an important node for multiple metabolic pathways, indicated by the accumulation of amino acids and tricarboxylic acid cycle components in anthers. Notably, the anther defects of the mutant are causally associated with the abnormal accumulation of hydrogen peroxide, which can reconstitute the phenotype when applied to wild-type anthers. Collectively, these findings demonstrate how aaRSs affect male organ development in plants, likely through protein synthesis, metabolic homeostasis, and redox status.

摘要

氨酰-tRNA 合成酶(aaRSs)在蛋白质合成中具有管家作用,但人们对这些 aaRSs 如何参与器官发育知之甚少。在这里,我们报告说,水稻()谷氨酰-tRNA 合成酶(OsERS1)维持适当的体细胞组织,并限制早期花药发育过程中雄性生殖细胞的过度增殖。的表达在早期花药的分生组织层 2 衍生细胞中特异性可检测到,并且花药表现出层 2 衍生细胞的过度增殖和组织紊乱,导致早期花药中的融合裂片和额外的生殖细胞。OsERS1 将谷氨酸连接到 tRNA 的保守生化功能通过其辅因子 aaRS OsARC 得到增强。此外,代谢组学分析表明,OsERS1 是多种代谢途径的重要节点,这表明在花药中积累了氨基酸和三羧酸循环成分。值得注意的是,突变体的花药缺陷与过氧化氢的异常积累有关,当应用于野生型花药时,过氧化氢可以重建表型。总之,这些发现表明 aaRSs 如何通过蛋白质合成、代谢平衡和氧化还原状态影响植物雄性器官的发育。

相似文献

10
Glutamyl-tRNA sythetase.谷氨酰胺-tRNA合成酶
Biol Chem. 1997 Nov;378(11):1313-29.

引用本文的文献

9
MADS1 maintains barley spike morphology at high ambient temperatures.MADS1 维持大麦穗形态在较高环境温度下。
Nat Plants. 2021 Aug;7(8):1093-1107. doi: 10.1038/s41477-021-00957-3. Epub 2021 Jun 28.

本文引用的文献

1
Redox regulation of plant stem cell fate.植物干细胞命运的氧化还原调控
EMBO J. 2017 Oct 2;36(19):2844-2855. doi: 10.15252/embj.201695955. Epub 2017 Aug 24.
2
ROS Are Good.ROS 很好。
Trends Plant Sci. 2017 Jan;22(1):11-19. doi: 10.1016/j.tplants.2016.08.002. Epub 2016 Sep 23.
3
Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal.新陈代谢与细胞命运决定及干细胞更新的调控
Annu Rev Cell Dev Biol. 2016 Oct 6;32:399-409. doi: 10.1146/annurev-cellbio-111315-125134. Epub 2016 Aug 1.
6
Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation.花粉母细胞前体发育:细胞命运特化和分化。
Annu Rev Plant Biol. 2016 Apr 29;67:365-95. doi: 10.1146/annurev-arplant-043015-111804. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验