Almosallam Ibrahim
Ministry of Communications and Information Technology, Riyadh 12382, Saudi Arabia.
Entropy (Basel). 2025 May 27;27(6):568. doi: 10.3390/e27060568.
Quantum Key Distribution (QKD) enables the sharing of cryptographic keys secured by quantum mechanics. The BB84 protocol assumes single-photon sources, but practical systems rely on weak coherent pulses vulnerable to Photon-Number-Splitting (PNS) attacks. The Gottesman-Lo-Lütkenhaus-Preskill (GLLP) framework addresses these imperfections, deriving secure key rate bounds under limited PNS scenarios. The decoy-state protocol further improves performance by refining single-photon yield estimates, but still considers multi-photon states as insecure, thereby limiting intensities and constraining key rate and distance. More recently, finite-key security bounds for decoy-state QKD have been extended to address general attacks, ensuring security against adversaries capable of exploiting arbitrary strategies. In this work, we focus on a specific class of attacks, the generalized PNS attack, and demonstrate that higher pulse intensities can be securely used by employing Bayesian inference to estimate key parameters directly from observed data. By raising the pulse intensity to 10 photons, we achieve a 50-fold increase in key rate and a 62.2% increase in operational range (about 200 km) compared to the decoy-state protocol. Furthermore, we accurately model after-pulsing using a Hidden Markov Model (HMM) and reveal inaccuracies in decoy-state calculations that may produce erroneous key-rate estimates. While this methodology does not address all possible attacks, it provides a new approach to security proofs in QKD by shifting from worst-case assumption analysis to observation-dependent inference, advancing the reach and efficiency of discrete-variable QKD protocols.
量子密钥分发(QKD)能够实现由量子力学保障安全的加密密钥共享。BB84协议假定使用单光子源,但实际系统依赖于易受光子数分割(PNS)攻击的弱相干脉冲。 Gottesman-Lo-Lütkenhaus-Preskill(GLLP)框架解决了这些缺陷,在有限的PNS场景下推导了安全密钥率界限。诱骗态协议通过完善单光子产率估计进一步提高了性能,但仍将多光子态视为不安全,从而限制了强度并约束了密钥率和距离。最近,诱骗态QKD的有限密钥安全界限已扩展到应对一般攻击,确保抵御能够利用任意策略的对手的安全性。在这项工作中,我们专注于一类特定的攻击,即广义PNS攻击,并证明通过采用贝叶斯推理直接从观测数据估计密钥参数,可以安全地使用更高的脉冲强度。通过将脉冲强度提高到10个光子,与诱骗态协议相比,我们实现了密钥率提高50倍,工作范围增加62.2%(约200公里)。此外,我们使用隐马尔可夫模型(HMM)准确地对后脉冲进行建模,并揭示了诱骗态计算中可能产生错误密钥率估计的不准确之处。虽然这种方法不能应对所有可能的攻击,但它通过从最坏情况假设分析转向依赖观测的推理,为QKD中的安全性证明提供了一种新方法,提高了离散变量QKD协议的覆盖范围和效率。