Inmunología, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Vigo, Spain.
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
Front Immunol. 2018 Apr 19;9:791. doi: 10.3389/fimmu.2018.00791. eCollection 2018.
The use of biomaterials and nanosystems in antigen delivery has played a major role in the development of novel vaccine formulations in the last few decades. In an effort to gain a deeper understanding of the interactions between these systems and immunocompetent cells, we describe here a systematic and study on three types of polymeric nanocapsules (NCs). These carriers, which contained protamine (PR), polyarginine (PARG), or chitosan (CS) in the external shell, and their corresponding nanoemulsion were prepared, and their main physicochemical properties were characterized. The particles had a mean particle size in the range 250-450 nm and a positive zeta potential (~30-40 mV). The interaction of the nanosystems with different components of the immune system were investigated by measuring cellular uptake, reactive oxygen species production, activation of the complement cascade, cytokine secretion profile, and MAP kinases/nuclear factor κB activation. The results of these cell experiments showed that the NC formulations that included the arginine-rich polymers (PR and PARG) showed a superior ability to trigger different immune processes. Considering this finding, protamine and polyarginine nanocapsules (PR and PARG NCs) were selected to assess the association of the recombinant hepatitis B surface antigen (rHBsAg) as a model antigen to evaluate their ability to produce a protective immune response in mice. In this case, the results showed that PR NCs elicited higher IgG levels than PARG NCs and that this IgG response was a combination of anti-rHBsAg IgG1/IgG2a. This work highlights the potential of PR NCs for antigen delivery as an alternative to other positively charged nanocarriers.
在过去几十年中,生物材料和纳米系统在抗原传递中的应用在新型疫苗制剂的发展中发挥了重要作用。为了更深入地了解这些系统与免疫活性细胞之间的相互作用,我们在这里描述了对三种类型的聚合物纳米胶囊(NC)的系统研究。这些载体在外部壳中包含鱼精蛋白(PR)、聚精氨酸(PARG)或壳聚糖(CS),并制备了它们相应的纳米乳液,并对其主要物理化学性质进行了表征。这些颗粒的平均粒径在 250-450nm 范围内,并且具有正的 ζ 电位(约 30-40mV)。通过测量细胞摄取、活性氧物质产生、补体级联激活、细胞因子分泌谱和 MAP 激酶/核因子 κB 激活,研究了纳米系统与免疫系统不同成分的相互作用。这些细胞实验的结果表明,包含精氨酸丰富聚合物(PR 和 PARG)的 NC 制剂显示出触发不同免疫过程的卓越能力。考虑到这一发现,选择鱼精蛋白和聚精氨酸纳米胶囊(PR 和 PARG NC)来评估重组乙型肝炎表面抗原(rHBsAg)作为模型抗原的结合情况,以评估它们在小鼠中产生保护性免疫应答的能力。在这种情况下,结果表明 PR NC 引起的 IgG 水平高于 PARG NC,并且该 IgG 反应是抗-rHBsAg IgG1/IgG2a 的组合。这项工作强调了 PR NC 作为替代其他带正电荷的纳米载体用于抗原传递的潜力。
Mol Pharm. 2018-11-19
PLoS One. 2013-4-22
J Control Release. 2016-11-14
Nanomedicine (Lond). 2014-10
Eur J Pharm Biopharm. 2018-9-27
Materials (Basel). 2024-9-14
Vaccines (Basel). 2022-7-14
Chem Sci. 2021-11-5
Vaccines (Basel). 2021-9-4
Pharmaceutics. 2021-8-31
Nanomaterials (Basel). 2021-6-7
Mol Ther. 2017-7-5
Am J Transl Res. 2017-1-15
J Control Release. 2016-11-14
Biochem Pharmacol. 2016-11-15
Pharm Pat Anal. 2016