文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物纳米胶囊用于疫苗传递:聚合物壳层对与免疫系统相互作用的影响。

Polymeric Nanocapsules for Vaccine Delivery: Influence of the Polymeric Shell on the Interaction With the Immune System.

机构信息

Inmunología, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia), Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo, Vigo, Spain.

Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.

出版信息

Front Immunol. 2018 Apr 19;9:791. doi: 10.3389/fimmu.2018.00791. eCollection 2018.


DOI:10.3389/fimmu.2018.00791
PMID:29725329
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5916973/
Abstract

The use of biomaterials and nanosystems in antigen delivery has played a major role in the development of novel vaccine formulations in the last few decades. In an effort to gain a deeper understanding of the interactions between these systems and immunocompetent cells, we describe here a systematic and study on three types of polymeric nanocapsules (NCs). These carriers, which contained protamine (PR), polyarginine (PARG), or chitosan (CS) in the external shell, and their corresponding nanoemulsion were prepared, and their main physicochemical properties were characterized. The particles had a mean particle size in the range 250-450 nm and a positive zeta potential (~30-40 mV). The interaction of the nanosystems with different components of the immune system were investigated by measuring cellular uptake, reactive oxygen species production, activation of the complement cascade, cytokine secretion profile, and MAP kinases/nuclear factor κB activation. The results of these cell experiments showed that the NC formulations that included the arginine-rich polymers (PR and PARG) showed a superior ability to trigger different immune processes. Considering this finding, protamine and polyarginine nanocapsules (PR and PARG NCs) were selected to assess the association of the recombinant hepatitis B surface antigen (rHBsAg) as a model antigen to evaluate their ability to produce a protective immune response in mice. In this case, the results showed that PR NCs elicited higher IgG levels than PARG NCs and that this IgG response was a combination of anti-rHBsAg IgG1/IgG2a. This work highlights the potential of PR NCs for antigen delivery as an alternative to other positively charged nanocarriers.

摘要

在过去几十年中,生物材料和纳米系统在抗原传递中的应用在新型疫苗制剂的发展中发挥了重要作用。为了更深入地了解这些系统与免疫活性细胞之间的相互作用,我们在这里描述了对三种类型的聚合物纳米胶囊(NC)的系统研究。这些载体在外部壳中包含鱼精蛋白(PR)、聚精氨酸(PARG)或壳聚糖(CS),并制备了它们相应的纳米乳液,并对其主要物理化学性质进行了表征。这些颗粒的平均粒径在 250-450nm 范围内,并且具有正的 ζ 电位(约 30-40mV)。通过测量细胞摄取、活性氧物质产生、补体级联激活、细胞因子分泌谱和 MAP 激酶/核因子 κB 激活,研究了纳米系统与免疫系统不同成分的相互作用。这些细胞实验的结果表明,包含精氨酸丰富聚合物(PR 和 PARG)的 NC 制剂显示出触发不同免疫过程的卓越能力。考虑到这一发现,选择鱼精蛋白和聚精氨酸纳米胶囊(PR 和 PARG NC)来评估重组乙型肝炎表面抗原(rHBsAg)作为模型抗原的结合情况,以评估它们在小鼠中产生保护性免疫应答的能力。在这种情况下,结果表明 PR NC 引起的 IgG 水平高于 PARG NC,并且该 IgG 反应是抗-rHBsAg IgG1/IgG2a 的组合。这项工作强调了 PR NC 作为替代其他带正电荷的纳米载体用于抗原传递的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/5adb48082ba4/fimmu-09-00791-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/cdba2e8b1815/fimmu-09-00791-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/3d7bb4007428/fimmu-09-00791-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/235f61d26255/fimmu-09-00791-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/7ff06796fa19/fimmu-09-00791-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/674c1900cc97/fimmu-09-00791-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/3fc47b5187d3/fimmu-09-00791-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/5adb48082ba4/fimmu-09-00791-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/cdba2e8b1815/fimmu-09-00791-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/3d7bb4007428/fimmu-09-00791-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/235f61d26255/fimmu-09-00791-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/7ff06796fa19/fimmu-09-00791-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/674c1900cc97/fimmu-09-00791-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/3fc47b5187d3/fimmu-09-00791-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76e8/5916973/5adb48082ba4/fimmu-09-00791-g007.jpg

相似文献

[1]
Polymeric Nanocapsules for Vaccine Delivery: Influence of the Polymeric Shell on the Interaction With the Immune System.

Front Immunol. 2018-4-19

[2]
Protamine Nanocapsules for the Development of Thermostable Adjuvanted Nanovaccines.

Mol Pharm. 2018-11-19

[3]
Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: a needle-free vaccination strategy.

J Control Release. 2013-9-25

[4]
A polymer/oil based nanovaccine as a single-dose immunization approach.

PLoS One. 2013-4-22

[5]
Rational design of protamine nanocapsules as antigen delivery carriers.

J Control Release. 2016-11-14

[6]
Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant.

Artif Cells Nanomed Biotechnol. 2017-12-20

[7]
Highly versatile immunostimulating nanocapsules for specific immune potentiation.

Nanomedicine (Lond). 2014-10

[8]
Influence of the surface properties of nanocapsules on their interaction with intestinal barriers.

Eur J Pharm Biopharm. 2018-9-27

[9]
Design of Polymeric Nanocapsules for Intranasal Vaccination against Mycobacterium Tuberculosis: Influence of the Polymeric Shell and Antigen Positioning.

Pharmaceutics. 2020-5-28

[10]
Polymeric lamellar substrate particles as carrier adjuvant for recombinant hepatitis B surface antigen vaccine.

Vaccine. 2009-4-14

引用本文的文献

[1]
Ultrasound-Assisted Preparation of Hyaluronic Acid-Based Nanocapsules with an Oil Core.

Materials (Basel). 2024-9-14

[2]
Precision Vaccinology Approaches for the Development of Adjuvanted Vaccines Targeted to Distinct Vulnerable Populations.

Pharmaceutics. 2023-6-19

[3]
Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance.

Vaccines (Basel). 2022-7-14

[4]
Cracking the immune fingerprint of metal-organic frameworks.

Chem Sci. 2021-11-5

[5]
The Importance of Nanocarrier Design and Composition for an Efficient Nanoparticle-Mediated Transdermal Vaccination.

Vaccines (Basel). 2021-12-1

[6]
Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application.

Pharmaceutics. 2021-12-5

[7]
Formulation-based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives.

Bioeng Transl Med. 2021-5-4

[8]
Nanovaccines against Animal Pathogens: The Latest Findings.

Vaccines (Basel). 2021-9-4

[9]
Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery.

Pharmaceutics. 2021-8-31

[10]
Use of Protamine in Nanopharmaceuticals-A Review.

Nanomaterials (Basel). 2021-6-7

本文引用的文献

[1]
Sequestering of damage-associated molecular patterns (DAMPs): a possible mechanism affecting the immune-stimulating properties of aluminium adjuvants.

Immunol Res. 2017-12

[2]
Polyarginine nanocapsules: A versatile nanocarrier with potential in transmucosal drug delivery.

Int J Pharm. 2017-8-30

[3]
Lipid Nanoparticle Systems for Enabling Gene Therapies.

Mol Ther. 2017-7-5

[4]
Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens.

Int J Nanomedicine. 2017-2-14

[5]
Non-invasive administration of biodegradable nano-carrier vaccines.

Am J Transl Res. 2017-1-15

[6]
Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems.

Gene Ther. 2017-1-17

[7]
Rational design of protamine nanocapsules as antigen delivery carriers.

J Control Release. 2016-11-14

[8]
Vaccine technologies: From whole organisms to rationally designed protein assemblies.

Biochem Pharmacol. 2016-11-15

[9]
Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles.

J Control Release. 2016-3-10

[10]
Recent advances in vaccine delivery.

Pharm Pat Anal. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索