Mondal Manas, Liao Renjie, Nazaroff Christopher D, Samuel Adam D, Guo Jia
Biodesign Institute , School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , USA . Email:
Division of Pulmonary Medicine , Department of Biochemistry and Molecular Biology , Mayo Clinic Arizona , Scottsdale , Arizona 85259 , USA.
Chem Sci. 2018 Feb 13;9(11):2909-2917. doi: 10.1039/c7sc05089e. eCollection 2018 Mar 21.
The ability to profile transcripts and genomic loci comprehensively in single cells is essential to advance our understanding of normal physiology and disease pathogenesis. Here we report a highly multiplexed single-cell RNA and DNA analysis approach using bioorthogonal cleavable fluorescent oligonucleotides. In this approach, oligonucleotides tethered to fluorophores through an azide-based cleavable linker are used to detect their nucleic acids targets by hybridization. After fluorescence imaging, the fluorophores in the whole specimen are efficiently cleaved in 30 minutes without loss of RNA or DNA integrity. Through reiterative cycles of hybridization, imaging, and cleavage, this method has the potential to quantify hundreds to thousands of different RNA species or genomic loci in single cells at the single-molecule sensitivity. Applying this approach, we demonstrate that different nucleic acids can be detected in each hybridization cycle by multi-color staining, and at least ten continuous hybridization cycles can be carried out in the same specimen. We also show that the integrated single-cell analysis of DNA, RNA and protein can be achieved using cleavable fluorescent oligonucleotides combined with cleavable fluorescent antibodies. This highly multiplexed imaging platform will have wide applications in systems biology and biomedical research.
在单细胞水平全面分析转录本和基因组位点的能力对于深化我们对正常生理学和疾病发病机制的理解至关重要。在此,我们报告一种使用生物正交可切割荧光寡核苷酸的高度多重单细胞RNA和DNA分析方法。在该方法中,通过基于叠氮化物的可切割接头与荧光团相连的寡核苷酸用于通过杂交检测其核酸靶标。荧光成像后,整个样本中的荧光团在30分钟内被有效切割,而不会损失RNA或DNA的完整性。通过杂交、成像和切割的重复循环,该方法有潜力以单分子灵敏度在单细胞中定量数百到数千种不同的RNA种类或基因组位点。应用这种方法,我们证明在每个杂交循环中可以通过多色染色检测不同的核酸,并且在同一样本中可以进行至少十个连续的杂交循环。我们还表明,使用可切割荧光寡核苷酸与可切割荧光抗体相结合,可以实现DNA、RNA和蛋白质的整合单细胞分析。这个高度多重的成像平台将在系统生物学和生物医学研究中有广泛的应用。