Suppr超能文献

动态对比增强 MRI 在评估 ER 阳性、HER2 阴性、淋巴结阴性浸润性乳腺癌中对侧实质增强与生存结局的相关性中的作用。

Role of dynamic contrast-enhanced MRI in evaluating the association between contralateral parenchymal enhancement and survival outcome in ER-positive, HER2-negative, node-negative invasive breast cancer.

机构信息

Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.

Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea.

出版信息

J Magn Reson Imaging. 2018 Dec;48(6):1678-1689. doi: 10.1002/jmri.26176. Epub 2018 May 7.

Abstract

BACKGROUND

Background parenchymal enhancement (BPE) on dynamic contrast-enhanced (DCE)-MRI has been associated with breast cancer risk, both based on qualitative and quantitative assessments.

PURPOSE

To investigate whether BPE of the contralateral breast on preoperative DCE-MRI is associated with therapy outcome in ER-positive, HER2-negative, node-negative invasive breast cancer.

STUDY TYPE

Retrospective.

POPULATION

In all, 289 patients with unilateral ER-positive, HER2-negative, node-negative breast cancer larger than 5 mm.

FIELD STRENGTH/SEQUENCE: 3T, T -weighted DCE sequence.

ASSESSMENT

BPE of the contralateral breast was assessed qualitatively by two dedicated radiologists and quantitatively (using region-of-interest and automatic breast segmentation).

STATISTICAL TESTS

Cox regression analysis was used to determine associations with recurrence-free survival (RFS) and distant metastasis-free survival (DFS). Interobserver variability for parenchymal enhancement was assessed using kappa statistics and intraclass correlation coefficient (ICC).

RESULTS

The median follow-up time was 75.8 months. Multivariate analysis showed receipt of total mastectomy (hazard ratio [HR]: 5.497) and high Ki-67 expression level (HR: 5.956) were independent factors associated with worse RFS (P < 0.05). Only a high Ki-67 expression level was associated with worse DFS (HR: 3.571, P = 0.045). BPE assessments were not associated with outcome (RFS [qualitative BPE: P = 0.75, 0.92 for readers 1 and 2; quantitative BPE: P = 0.38-0.99], DFS, [qualitative BPE: P = 0.41, 0.16 for readers 1 and 2; quantitative BPE: P = 0.68-0.99]). For interobserver variability, there was good agreement between qualitative (κ = 0.700) and good to perfect agreement for most quantitative parameters of BPE.

DATA CONCLUSION

Contralateral BPE showed no association with survival outcome in patients with ER-positive, HER2-negative, node-negative invasive breast cancer. A high Ki-67 expression level was associated with both worse recurrence-free and distant metastasis-free survival.

LEVEL OF EVIDENCE

3 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;48:1678-1689.

摘要

背景

基于定性和定量评估,动态对比增强(DCE)-MRI 上的背景实质强化(BPE)与乳腺癌风险相关。

目的

研究术前 DCE-MRI 上对侧乳房的 BPE 是否与 ER 阳性、HER2 阴性、淋巴结阴性浸润性乳腺癌的治疗结果相关。

研究类型

回顾性。

人群

共有 289 名单侧 ER 阳性、HER2 阴性、淋巴结阴性浸润性乳腺癌患者,肿瘤大于 5mm。

磁场强度/序列:3T,T1 加权 DCE 序列。

评估

两位专门的放射科医生对侧乳房的 BPE 进行定性评估,并进行定量评估(使用感兴趣区域和自动乳房分割)。

统计检验

使用 Cox 回归分析确定与无复发生存率(RFS)和远处无转移生存率(DFS)的相关性。使用kappa 统计和组内相关系数(ICC)评估实质增强的观察者间变异性。

结果

中位随访时间为 75.8 个月。多变量分析显示,全乳切除术(危险比[HR]:5.497)和高 Ki-67 表达水平(HR:5.956)是与 RFS 较差相关的独立因素(P<0.05)。仅高 Ki-67 表达水平与较差的 DFS 相关(HR:3.571,P=0.045)。BPE 评估与结果无关(RFS[定性 BPE:P=0.75,0.92 为读者 1 和 2;定量 BPE:P=0.38-0.99],DFS[定性 BPE:P=0.41,0.16 为读者 1 和 2;定量 BPE:P=0.68-0.99])。对于观察者间的变异性,定性 BPE (κ=0.700)和大多数定量 BPE 参数之间存在良好的一致性,而定量 BPE 参数之间存在极好的一致性。

数据结论

ER 阳性、HER2 阴性、淋巴结阴性浸润性乳腺癌患者对侧 BPE 与生存结果无关。高 Ki-67 表达水平与无复发生存率和远处无转移生存率均较差相关。

证据水平

3 级技术功效:4 期。JMRI 2018;48:1678-1689。

相似文献

引用本文的文献

本文引用的文献

4
A breast cancer gene signature for indolent disease.用于惰性疾病的乳腺癌基因特征。
Breast Cancer Res Treat. 2017 Jul;164(2):461-466. doi: 10.1007/s10549-017-4262-0. Epub 2017 Apr 27.
10
Prospective Validation of a 21-Gene Expression Assay in Breast Cancer.21基因表达检测法在乳腺癌中的前瞻性验证
N Engl J Med. 2015 Nov 19;373(21):2005-14. doi: 10.1056/NEJMoa1510764. Epub 2015 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验