Suppr超能文献

定量测量背景实质增强可预测乳腺癌风险。

Quantitative Measures of Background Parenchymal Enhancement Predict Breast Cancer Risk.

机构信息

Departments of Diagnostic Imaging and Interventional Radiology and Oncologic Sciences, Division of Breast Imaging, H. Lee Moffitt Cancer Center and Research Institute, 10902 McKinley Dr, Tampa, FL 33612.

Quantitative Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.

出版信息

AJR Am J Roentgenol. 2021 Jul;217(1):64-75. doi: 10.2214/AJR.20.23804. Epub 2020 Sep 2.

Abstract

Higher categories of background parenchymal enhancement (BPE) increase breast cancer risk. However, current clinical BPE categorization is subjective. Using a semiautomated segmentation algorithm, we calculated quantitative BPE measures and investigated the utility of individual features and feature pairs in significantly predicting subsequent breast cancer risk compared with radiologist-assigned BPE category. In this retrospective case-control study, we identified 95 women at high risk of breast cancer but without a personal history of breast cancer who underwent breast MRI. Of these women, 19 subsequently developed breast cancer and were included as cases. Each case was age matched to four control patients (76 control patients total). Sociodemographic characteristics were compared between the cases and matched control patients using the Mann-Whitney test. From each dynamic contrast-enhanced MRI examination, quantitative fibroglandular tissue and BPE measures were computed by averaging enhancing voxels above enhancement ratio thresholds (0-100%), totaling the enhancing volume above thresholds (BPE volume in cm), and estimating the percentage of enhancing tissue above thresholds relative to total breast volume (BPE%) on each gadolinium-enhanced phase. For the 91 imaging features generated, we compared predictive performance using conditional logistic regression with 80:20 hold-out cross validation and ROC curve analysis. ROC AUC was the figure of merit. Sensitivity, specificity, PPV, and NPV were also computed. All feature pairs were exhaustively searched to identify those with the highest AUC and Youden index. A DeLong test was used to compare predictive performance (AUCs). Women subsequently diagnosed with breast cancer were more likely to have mild, moderate, or marked BPE (odds ratio, 3.0; 95% CI, 0.9-10.0; = .07). According to ROC curve analysis, a BPE category threshold greater than minimal resulted in a maximized AUC (0.62) in distinguishing cases from control patients. Compared with BPE category, the first gadolinium-enhanced (phase 1) BPE% at the 30% and 40% enhancement ratio thresholds yielded significantly higher AUC values of 0.85 ( = .0007) and 0.84 ( = .0004), respectively. Feature combinations showed similar AUC values with improved sensitivity. Preliminary data indicate that quantitative BPE measures may outperform radiologist-assigned category in breast cancer risk prediction. Future risk prediction models that incorporate quantitative measures warrant additional investigation.

摘要

较高级别的背景实质增强(BPE)会增加乳腺癌风险。然而,目前临床 BPE 分类存在主观性。本研究使用半自动分割算法计算定量 BPE 指标,并研究了与放射科医师分配的 BPE 类别相比,单个特征和特征对在显著预测后续乳腺癌风险方面的效用。在这项回顾性病例对照研究中,我们确定了 95 名患有乳腺癌高风险但无乳腺癌个人史的女性,她们接受了乳房 MRI 检查。其中 19 名女性随后被诊断为乳腺癌,被纳入病例组。每个病例均与 4 名匹配的对照组患者(共 76 名对照组患者)进行年龄匹配。使用 Mann-Whitney 检验比较病例组和匹配对照组患者的社会人口统计学特征。从每例动态对比增强 MRI 检查中,通过平均增强比例阈值(0-100%)以上的增强体素、计算高于阈值的增强体积(cm 中的 BPE 体积)以及估计相对于总乳房体积的高于阈值的增强组织百分比(每个钆增强阶段的 BPE%)来计算定量纤维腺体组织和 BPE 指标。对于生成的 91 个成像特征,我们使用条件逻辑回归进行了比较,使用 80:20 的保留交叉验证和 ROC 曲线分析。ROC AUC 是评价指标。还计算了敏感性、特异性、PPV 和 NPV。对所有特征对进行了全面搜索,以确定具有最高 AUC 和 Youden 指数的特征对。使用 DeLong 检验比较预测性能(AUC)。随后被诊断为乳腺癌的女性更有可能出现轻度、中度或明显的 BPE(比值比,3.0;95%CI,0.9-10.0;P =.07)。根据 ROC 曲线分析,大于最小的 BPE 类别阈值可使区分病例和对照患者的 AUC 最大化(0.62)。与 BPE 类别相比,在 30%和 40%增强比阈值下的第一期增强(相 1)BPE%的 AUC 值显著更高,分别为 0.85(P =.0007)和 0.84(P =.0004)。特征组合具有相似的 AUC 值,敏感性提高。初步数据表明,定量 BPE 指标可能在乳腺癌风险预测中优于放射科医师分配的类别。未来包含定量指标的风险预测模型值得进一步研究。

相似文献

引用本文的文献

1
Application of Machine Learning to Breast MR Imaging.机器学习在乳腺磁共振成像中的应用。
Magn Reson Med Sci. 2025 Jul 1;24(3):279-299. doi: 10.2463/mrms.rev.2025-0021. Epub 2025 Jun 14.
2
Relationship between breast tissue involution and breast cancer.乳腺组织退化与乳腺癌之间的关系。
Front Oncol. 2025 Apr 7;15:1420350. doi: 10.3389/fonc.2025.1420350. eCollection 2025.

本文引用的文献

7
Deformable Registration for Longitudinal Breast MRI Screening.纵向乳腺 MRI 筛查的可变形配准。
J Digit Imaging. 2018 Oct;31(5):718-726. doi: 10.1007/s10278-018-0063-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验