Universidad de Navarra, Facultad de Ciencias, Departamento de Química, Laboratorio Integrado de Calidad Ambiental (LICA), Campus Universitario, Irunlarrea 1, 31008 Pamplona, Spain.
Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Campus Universitario, Irunlarrea 1, 31008 Pamplona, Spain.
Sci Total Environ. 2018 Apr 1;619-620:883-895. doi: 10.1016/j.scitotenv.2017.11.139. Epub 2017 Nov 29.
Ammonia (NH) emissions are linked to eutrophication, plant toxicity and ecosystem shifts from N to P limitation. Bryophytes are key components of terrestrial ecosystems, yet highly sensitive to N deposition. Hence, physiological responses of mosses may be indicative of NH-related impacts, and thus useful to foresee future ecosystem damages and establish atmospheric Critical Levels (CLEs). In this work, samples of Hypnum cupressiforme Hedw. were seasonally collected along a well-defined NH concentration gradient in an oak woodland during a one-year period. We performed a comprehensive evaluation of tissue chemistry, stoichiometry, metabolic enzymes, antioxidant response, membrane damages, photosynthetic pigments, soluble protein content and N and C isotopic fractionation. Our results showed that all the physiological parameters studied (except P, K, Ca and C) responded to the NH gradient in predictable ways, although the magnitude and significance of the response were dependent on the sampling season, especially for enzymatic activities and pigments content. Nutritional imbalances, membrane damages and disturbance of cellular C and N metabolism were found as a consequence to NH exposure, being more affected the mosses more exposed to the barn atmosphere. These findings suggested significant implications of intensive farming for the correct functioning of oak woodlands and highlighted the importance of seasonal dynamics in the study of key physiological processes related to photosynthesis, mosses nutrition and responses to oxidative stress. Finally, tissue N showed the greatest potential for the identification of NH-related ecological end points (estimated CLE=3.5μgm), whereas highly scattered physiological responses, although highly sensitive, were not suitable to that end.
氨(NH)排放与富营养化、植物毒性和生态系统从氮限制向磷限制的转变有关。苔藓植物是陆地生态系统的关键组成部分,但对氮沉积高度敏感。因此,苔藓的生理反应可能表明与 NH 相关的影响,因此有助于预测未来的生态系统损害并建立大气临界水平(CLE)。在这项工作中,我们在一年的时间里,在一个橡树林中沿着一个明确的 NH 浓度梯度,季节性地采集了杯状匐灯藓(Hypnum cupressiforme Hedw.)的样本。我们对组织化学、化学计量学、代谢酶、抗氧化反应、膜损伤、光合色素、可溶性蛋白质含量以及氮和碳同位素分馏进行了全面评估。我们的结果表明,所有研究的生理参数(除了 P、K、Ca 和 C)都以可预测的方式对 NH 梯度做出反应,尽管反应的幅度和意义取决于采样季节,尤其是对于酶活性和色素含量。我们发现,NH 暴露会导致营养失衡、膜损伤以及细胞碳和氮代谢紊乱,而暴露于谷仓大气中的苔藓受到的影响更大。这些发现表明,集约化农业对橡树林地的正常运转有重大影响,并强调了在研究与光合作用、苔藓营养和对氧化应激的反应相关的关键生理过程时季节性动态的重要性。最后,组织氮显示出最大的潜力,可以识别与 NH 相关的生态终点(估计 CLE=3.5μg/m),而高度分散的生理反应虽然高度敏感,但不适合该目的。