Unidad de Celómica, Área de Biología Celular y del Desarrollo, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid E28029, Spain; and.
Unidad de Celómica, Área de Biología Celular y del Desarrollo, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid E28029, Spain; and
J Immunol. 2018 May 15;200(10):3319-3331. doi: 10.4049/jimmunol.1800446.
Advances in flow cytometry (FCM) increasingly demand adoption of computational analysis tools to tackle the ever-growing data dimensionality. In this study, we tested different data input modes to evaluate how cytometry acquisition configuration and data compensation procedures affect the performance of unsupervised phenotyping tools. An analysis workflow was set up and tested for the detection of changes in reference bead subsets and in a rare subpopulation of murine lymph node CD103 dendritic cells acquired by conventional or spectral cytometry. Raw spectral data or pseudospectral data acquired with the full set of available detectors by conventional cytometry consistently outperformed datasets acquired and compensated according to FCM standards. Our results thus challenge the paradigm of one-fluorochrome/one-parameter acquisition in FCM for unsupervised cluster-based analysis. Instead, we propose to configure instrument acquisition to use all available fluorescence detectors and to avoid integration and compensation procedures, thereby using raw spectral or pseudospectral data for improved automated phenotypic analysis.
流式细胞术(FCM)的进步越来越要求采用计算分析工具来解决不断增长的数据维数。在这项研究中,我们测试了不同的数据输入模式,以评估细胞术采集配置和数据补偿程序如何影响无监督表型分析工具的性能。我们建立并测试了一个分析工作流程,用于检测参考珠亚群和通过常规或光谱细胞术获得的鼠淋巴结 CD103 树突状细胞稀有亚群的变化。通过常规细胞术使用全套可用检测器获得的原始光谱数据或伪光谱数据始终优于根据 FCM 标准获取和补偿的数据集。因此,我们的结果挑战了 FCM 中用于无监督基于聚类的分析的一荧光染料/一参数采集范例。相反,我们建议配置仪器采集以使用所有可用的荧光探测器,并避免积分和补偿程序,从而使用原始光谱或伪光谱数据进行改进的自动表型分析。