Suppr超能文献

超快谷氨酸传感器可解析 Schaffer 侧支突触的高频释放。

Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.

机构信息

Molecular and Clinical Sciences Research Institute, St George's, University of London, SW17 0RE London, United Kingdom.

Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, 20251 Hamburg, Germany.

出版信息

Proc Natl Acad Sci U S A. 2018 May 22;115(21):5594-5599. doi: 10.1073/pnas.1720648115. Epub 2018 May 7.

Abstract

Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to ∼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGlu ) and ultrafast (iGlu ) variants with comparable brightness but increased for glutamate (137 μM and 600 μM, respectively). Compared with iGluSnFR, iGlu has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGlu is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGlu responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons.

摘要

谷氨酸能突触在许多不同的时间尺度上表现出丰富的可塑性机制,涉及递质释放效率的动态变化以及突触后谷氨酸受体数量和功能的变化。遗传编码的谷氨酸传感器 iGluSnFR 能够以高达约 10 Hz 的频率可视化来自突触前末梢的谷氨酸释放。然而,要解析高频爆发期间的谷氨酸动力学,需要更快的指标。在这里,我们报告了快速(iGlu )和超快(iGlu )变体的开发,它们具有可比的亮度,但对谷氨酸的 增加(分别为 137 μM 和 600 μM)。与 iGluSnFR 相比,iGlu 在体外的解离速率快六倍,在突触中的动力学快五倍。通过将三态模型拟合到动力学数据中,我们确定谷氨酸结合后的大构象变化是限速步骤。在以 100 Hz 刺激的大鼠海马切片培养物中,我们发现 iGlu 足够快,可以分辨单个谷氨酸释放事件,表明谷氨酸从突触间隙中迅速清除。在 100 Hz 脉冲串期间 iGlu 反应的抑制与突触后 EPSP 的抑制相关,表明高频刺激期间的抑制完全是突触前起源的。在单个末梢上,从抑制中恢复可以从第二个脉冲释放的谷氨酸量来预测(成对脉冲易化/抑制),表明 Schaffer 侧枝末梢处的尖峰串的频率依赖性滤波存在差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e728/6003469/fe8e8358e150/pnas.1720648115fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验