Suppr超能文献

基于一对具有协同作用的药物的最佳治疗方案安排。

Optimal Therapy Scheduling Based on a Pair of Collaterally Sensitive Drugs.

机构信息

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.

出版信息

Bull Math Biol. 2018 Jul;80(7):1776-1809. doi: 10.1007/s11538-018-0434-2. Epub 2018 May 7.

Abstract

Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, [Formula: see text] and [Formula: see text], each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for [Formula: see text] and [Formula: see text], we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., [Formula: see text]-long for DrugA and [Formula: see text]-long for DrugB with [Formula: see text] and [Formula: see text]). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, [Formula: see text], and the effect of each drug. We determine a critical ratio, which we term [Formula: see text], at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, [Formula: see text] changes monotonically to [Formula: see text] and then, during the second stage, remains at [Formula: see text] thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.

摘要

尽管在癌症治疗方面取得了重大进展,但耐药性的发展仍然是一个主要障碍。为了解决这个问题,人们提出了一种策略,即序贯应用药物治疗,其中一种药物的耐药性会诱导对另一种药物的敏感性,这种概念称为交叉敏感性。然而,在这些情况下,药物转换的最佳时机仍然未知。为了研究这个问题,我们开发了一个由耐药细胞和敏感细胞组成的异质肿瘤序贯治疗的动力学模型。使用一对药物(DrugA、DrugB),并在治疗过程中定期切换。假设一种药物的耐药细胞对另一种药物具有交叉敏感性,我们将癌细胞分为两类,[Formula: see text]和[Formula: see text],它们分别是对指定药物耐药并同时对另一种药物敏感的细胞亚群,然后我们探索了由此产生的种群动态。具体来说,基于[Formula: see text]和[Formula: see text]的常微分方程系统,我们确定最佳治疗策略包括两个阶段:第一阶段,使用选定的有效药物,直到特定时间点 T;第二阶段,反复切换药物,在这一阶段,每种药物的使用时间相对较长(即,DrugA 长[Formula: see text],DrugB 长[Formula: see text],[Formula: see text]和[Formula: see text])。我们证明,第一个药物给药的初始阶段的最佳持续时间 T 短于药物在减少总种群方面保持有效的时间,这与当前的临床直觉相反。我们进一步分析了种群构成[Formula: see text]与每种药物效果之间的关系。我们确定了一个临界比,我们称之为[Formula: see text],在这个比值下,两种药物的效果相等。随着最佳策略的第一阶段的应用,[Formula: see text]单调变化到[Formula: see text],然后在第二阶段,保持在[Formula: see text]。除了我们的分析结果外,我们还探索了基于个体的随机模型,并给出了所发现的解类的灭绝时间分布。总的来说,我们的研究结果为改善临床肿瘤学的治疗方案提供了机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验