Suppr超能文献

在嗜甲基甲基杆菌AM1中鉴定出第四种甲酸脱氢酶,并证实甲酸氧化在甲基营养中的重要作用。

Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy.

作者信息

Chistoserdova Ludmila, Crowther Gregory J, Vorholt Julia A, Skovran Elizabeth, Portais Jean-Charles, Lidstrom Mary E

机构信息

Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Bacteriol. 2007 Dec;189(24):9076-81. doi: 10.1128/JB.01229-07. Epub 2007 Oct 5.

Abstract

A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.

摘要

我们之前曾描述过甲基营养型细菌嗜甲基菌AM1的一个突变体,其编码三种甲酸脱氢酶(FDH)的基因存在损伤(L. 奇斯托瑟多娃、M. 劳克尔、J.-C. 波泰、J. A. 福尔霍尔特和M. E. 利德斯特伦,《细菌学杂志》186:22 - 28,2004年)。该突变体失去了利用甲酸生长的能力,但仍保留了利用甲醇生长的能力。在这项研究中,我们进一步研究了该突变体的表型。用[13C]甲酸进行的核磁共振实验以及14C标记实验表明,该突变体中产生了标记的二氧化碳,这表明存在一种额外的酶或甲酸氧化途径。该突变体对钨敏感的表型表明有钼依赖性酶参与其中。进行了全基因组芯片实验,以检测与野生型相比在三FDH突变体中过表达的基因,鉴定出一个基因(fdh4A),其翻译产物与一种未表征的假定钼蝶呤结合氧化还原酶样蛋白相似,与已知的甲酸脱氢酶α亚基相似度相对较低。在三FDH突变体背景下对该基因进行突变导致了甲醇阴性表型。当在野生型背景中删除该基因时,突变体在甲醇上的生长减弱,培养基中积累了高水平的甲酸,这表明FDH4在甲醇代谢中起重要作用。通过标记实验也证实了FDH4作为一种新型FDH的身份,该实验表明在生长的培养物中二氧化碳形成大幅减少。对fdh4A下游的一个小开放阅读框(fdh4B)进行突变导致的突变体表型与fdh4A突变体的表型相似,这表明fdh4B也参与甲酸氧化。

相似文献

5
Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.
Microbiology (Reading). 2010 Aug;156(Pt 8):2575-2586. doi: 10.1099/mic.0.038570-0. Epub 2010 May 6.
6
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Appl Environ Microbiol. 2013 Nov;79(22):6974-83. doi: 10.1128/AEM.02705-13. Epub 2013 Sep 6.
8
Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1.
PLoS One. 2014 Sep 18;9(9):e107887. doi: 10.1371/journal.pone.0107887. eCollection 2014.
9
The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties.
Eur J Biochem. 2003 Jan;270(2):325-33. doi: 10.1046/j.1432-1033.2003.03391.x.

引用本文的文献

1
Methylobacterium extorquens PA1 utilizes multiple strategies to maintain formaldehyde homeostasis during methylotrophic growth.
PLoS Genet. 2025 Jun 9;21(6):e1011736. doi: 10.1371/journal.pgen.1011736. eCollection 2025 Jun.
2
A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid.
Microb Cell Fact. 2024 Dec 23;23(1):344. doi: 10.1186/s12934-024-02583-y.
4
Genomic Insights into Moderately Thermophilic Methanotrophs of the Genus .
Microorganisms. 2024 Feb 26;12(3):469. doi: 10.3390/microorganisms12030469.
5
Structure and function relationship of formate dehydrogenases: an overview of recent progress.
IUCrJ. 2023 Sep 1;10(Pt 5):544-554. doi: 10.1107/S2052252523006437.
6
Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from sp. M107 and its broad metal selectivity.
Front Microbiol. 2023 Jul 25;14:1191436. doi: 10.3389/fmicb.2023.1191436. eCollection 2023.
7
Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs.
Synth Syst Biotechnol. 2023 Jun 13;8(3):396-415. doi: 10.1016/j.synbio.2023.06.001. eCollection 2023 Sep.
9
Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph sp. RTK17.1.
Front Microbiol. 2021 Mar 24;12:651744. doi: 10.3389/fmicb.2021.651744. eCollection 2021.

本文引用的文献

1
Implementation of microarrays for Methylobacterium extorquens AM1.
OMICS. 2007 Winter;11(4):325-40. doi: 10.1089/omi.2007.0027.
2
Physiological analysis of Methylobacterium extorquens AM1 grown in continuous and batch cultures.
Arch Microbiol. 2006 Aug;186(2):139-49. doi: 10.1007/s00203-006-0131-7. Epub 2006 Jul 5.
3
Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP.
Mol Microbiol. 2005 Dec;58(5):1354-67. doi: 10.1111/j.1365-2958.2005.04920.x.
4
Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism.
PLoS Biol. 2005 Feb;3(2):e16. doi: 10.1371/journal.pbio.0030016. Epub 2005 Jan 4.
7
Tungstate as competitive inhibitor of molybdate in nitrate assimilation and in N2 fixation by Azotobacter.
Biochim Biophys Acta. 1957 Feb;23(2):433-5. doi: 10.1016/0006-3002(57)90351-7.
9
Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view.
J Bacteriol. 2003 May;185(10):2980-7. doi: 10.1128/JB.185.10.2980-2987.2003.
10
Regulatory network of acid resistance genes in Escherichia coli.
Mol Microbiol. 2003 May;48(3):699-712. doi: 10.1046/j.1365-2958.2003.03477.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验