Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland.
Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy.
Biophys J. 2018 May 8;114(9):2083-2094. doi: 10.1016/j.bpj.2018.03.027.
Protein misfolding is implicated in many diseases, including serpinopathies. For the canonical inhibitory serpin α-antitrypsin, mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes, leading to liver disease. Using all-atom simulations based on the recently developed bias functional algorithm, we elucidate how wild-type α-antitrypsin folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The deleterious Z mutation disrupts folding at an early stage, whereas the relatively benign S mutant shows late-stage minor misfolding. A number of suppressor mutations ameliorate the effects of the Z mutation, and simulations on these mutants help to elucidate the relative roles of steric clashes and electrostatic interactions in Z misfolding. These results demonstrate a striking correlation between atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.
蛋白质错误折叠与许多疾病有关,包括丝氨酸蛋白酶抑制剂病。对于典型的抑制性丝氨酸蛋白酶 α1-抗胰蛋白酶,突变可导致蛋白质缺乏,从而导致肺部疾病,而错误折叠的突变体可在肝细胞中积累,导致肝脏疾病。本研究使用最近开发的偏置功能算法的全原子模拟,阐明了野生型α1-抗胰蛋白酶的折叠方式,以及与疾病相关的 S(Glu264Val)和 Z(Glu342Lys)突变如何导致错误折叠。有害的 Z 突变会在早期破坏折叠,而相对良性的 S 突变则表现出晚期的轻微错误折叠。许多抑制突变可以改善 Z 突变的影响,对这些突变体的模拟有助于阐明空间位阻和静电相互作用在 Z 突变体错误折叠中的相对作用。这些结果表明原子事件与疾病严重程度之间存在惊人的相关性,并揭示了导致链偏离其正确折叠途径的机制。