Suppr超能文献

全原子模拟揭示单点突变如何促进丝氨酸蛋白酶抑制剂错误折叠。

All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding.

机构信息

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland.

Dipartimento di Fisica, Università degli Studi di Trento, Povo (Trento), Italy; Trento Institute for Fundamental Physics and Applications, Povo (Trento), Italy.

出版信息

Biophys J. 2018 May 8;114(9):2083-2094. doi: 10.1016/j.bpj.2018.03.027.

Abstract

Protein misfolding is implicated in many diseases, including serpinopathies. For the canonical inhibitory serpin α-antitrypsin, mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes, leading to liver disease. Using all-atom simulations based on the recently developed bias functional algorithm, we elucidate how wild-type α-antitrypsin folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The deleterious Z mutation disrupts folding at an early stage, whereas the relatively benign S mutant shows late-stage minor misfolding. A number of suppressor mutations ameliorate the effects of the Z mutation, and simulations on these mutants help to elucidate the relative roles of steric clashes and electrostatic interactions in Z misfolding. These results demonstrate a striking correlation between atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.

摘要

蛋白质错误折叠与许多疾病有关,包括丝氨酸蛋白酶抑制剂病。对于典型的抑制性丝氨酸蛋白酶 α1-抗胰蛋白酶,突变可导致蛋白质缺乏,从而导致肺部疾病,而错误折叠的突变体可在肝细胞中积累,导致肝脏疾病。本研究使用最近开发的偏置功能算法的全原子模拟,阐明了野生型α1-抗胰蛋白酶的折叠方式,以及与疾病相关的 S(Glu264Val)和 Z(Glu342Lys)突变如何导致错误折叠。有害的 Z 突变会在早期破坏折叠,而相对良性的 S 突变则表现出晚期的轻微错误折叠。许多抑制突变可以改善 Z 突变的影响,对这些突变体的模拟有助于阐明空间位阻和静电相互作用在 Z 突变体错误折叠中的相对作用。这些结果表明原子事件与疾病严重程度之间存在惊人的相关性,并揭示了导致链偏离其正确折叠途径的机制。

相似文献

5
How the serpin α1-proteinase inhibitor folds.丝氨酸蛋白酶抑制剂 α1-折叠方式。
J Biol Chem. 2012 Apr 6;287(15):12425-32. doi: 10.1074/jbc.M111.315465. Epub 2012 Feb 13.

引用本文的文献

2
ER chaperones use a protein folding and quality control glyco-code.内质网伴侣使用一种蛋白质折叠和质量控制糖基码。
Mol Cell. 2023 Dec 21;83(24):4524-4537.e5. doi: 10.1016/j.molcel.2023.11.006. Epub 2023 Dec 4.
10
Successes and challenges in simulating the folding of large proteins.模拟大型蛋白质折叠的成功与挑战。
J Biol Chem. 2020 Jan 3;295(1):15-33. doi: 10.1074/jbc.REV119.006794. Epub 2019 Nov 11.

本文引用的文献

2
On the folding of a structurally complex protein to its metastable active state.关于结构复杂的蛋白质折叠到其亚稳态活性状态。
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):1998-2003. doi: 10.1073/pnas.1708173115. Epub 2018 Jan 17.
3
6
Molecular Mechanism of Z α1-Antitrypsin Deficiency.Zα1-抗胰蛋白酶缺乏症的分子机制
J Biol Chem. 2016 Jul 22;291(30):15674-86. doi: 10.1074/jbc.M116.727826. Epub 2016 May 31.
7
Cellular folding pathway of a metastable serpin.一种亚稳态丝氨酸蛋白酶抑制剂的细胞折叠途径。
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6484-9. doi: 10.1073/pnas.1603386113. Epub 2016 May 24.
8
Update on alpha-1 antitrypsin deficiency: New therapies.更新关于 α-1 抗胰蛋白酶缺乏症的信息:新疗法。
J Hepatol. 2016 Aug;65(2):413-24. doi: 10.1016/j.jhep.2016.03.010. Epub 2016 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验