Suppr超能文献

原发性硬化性胆管炎风险预估工具(PREsTo)可预测疾病结局:基于机器学习的推导和验证研究。

Primary Sclerosing Cholangitis Risk Estimate Tool (PREsTo) Predicts Outcomes of the Disease: A Derivation and Validation Study Using Machine Learning.

机构信息

Division of Gastroenterology &, Hepatology Mayo Clinic, Rochester, MN.

Norwegian PSC Research Center, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.

出版信息

Hepatology. 2020 Jan;71(1):214-224. doi: 10.1002/hep.30085. Epub 2018 Dec 28.

Abstract

Improved methods are needed to risk stratify and predict outcomes in patients with primary sclerosing cholangitis (PSC). Therefore, we sought to derive and validate a prediction model and compare its performance to existing surrogate markers. The model was derived using 509 subjects from a multicenter North American cohort and validated in an international multicenter cohort (n = 278). Gradient boosting, a machine-based learning technique, was used to create the model. The endpoint was hepatic decompensation (ascites, variceal hemorrhage, or encephalopathy). Subjects with advanced PSC or cholangiocarcinoma (CCA) at baseline were excluded. The PSC risk estimate tool (PREsTo) consists of nine variables: bilirubin, albumin, serum alkaline phosphatase (SAP) times the upper limit of normal (ULN), platelets, aspartate aminotransferase (AST), hemoglobin, sodium, patient age, and number of years since PSC was diagnosed. Validation in an independent cohort confirms that PREsTo accurately predicts decompensation (C-statistic, 0.90; 95% confidence interval [CI], 0.84-0.95) and performed well compared to Model for End-Stage Liver Disease (MELD) score (C-statistic, 0.72; 95% CI, 0.57-0.84), Mayo PSC risk score (C-statistic, 0.85; 95% CI, 0.77-0.92), and SAP <1.5 × ULN (C-statistic, 0.65; 95% CI, 0.55-0.73). PREsTo continued to be accurate among individuals with a bilirubin <2.0 mg/dL (C-statistic, 0.90; 95% CI, 0.82-0.96) and when the score was reapplied at a later course in the disease (C-statistic, 0.82; 95% CI, 0.64-0.95). Conclusion: PREsTo accurately predicts hepatic decompensation (HD) in PSC and exceeds the performance among other widely available, noninvasive prognostic scoring systems.

摘要

需要改进方法来对原发性硬化性胆管炎(PSC)患者进行风险分层和预测结局。因此,我们试图开发和验证一个预测模型,并将其性能与现有替代标志物进行比较。该模型是使用来自多中心北美队列的 509 名受试者推导得出的,并在国际多中心队列中进行了验证(n=278)。梯度提升,一种基于机器学习的技术,被用于创建该模型。终点是肝失代偿(腹水、静脉曲张出血或肝性脑病)。基线时患有晚期 PSC 或胆管癌(CCA)的受试者被排除在外。PSC 风险估计工具(PREsTo)由九个变量组成:胆红素、白蛋白、血清碱性磷酸酶(SAP)乘以正常值上限(ULN)、血小板、天冬氨酸氨基转移酶(AST)、血红蛋白、钠、患者年龄和从 PSC 诊断后的年数。在独立队列中的验证证实,PREsTo 可准确预测失代偿(C 统计量,0.90;95%置信区间[CI],0.84-0.95),并且与终末期肝病模型(MELD)评分(C 统计量,0.72;95%CI,0.57-0.84)、Mayo PSC 风险评分(C 统计量,0.85;95%CI,0.77-0.92)和 SAP<1.5×ULN(C 统计量,0.65;95%CI,0.55-0.73)相比表现良好。在胆红素<2.0mg/dL 的个体中(C 统计量,0.90;95%CI,0.82-0.96)和在疾病后期重新应用该评分时(C 统计量,0.82;95%CI,0.64-0.95),PREsTo 仍然准确。结论:PREsTo 可准确预测 PSC 中的肝失代偿(HD),并且优于其他广泛可用的非侵入性预后评分系统。

相似文献

引用本文的文献

5
Primary sclerosing cholangitis.原发性硬化性胆管炎
Nat Rev Dis Primers. 2025 Mar 13;11(1):17. doi: 10.1038/s41572-025-00600-x.
6
Management of primary sclerosing cholangitis: Current state-of-the-art.原发性硬化性胆管炎的管理:当前的技术水平。
Hepatol Commun. 2024 Nov 15;8(12). doi: 10.1097/HC9.0000000000000590. eCollection 2024 Dec 1.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验