Suppr超能文献

分类状态序列分析和回归树确定慢性病护理轨迹的决定因素:终末期肾病的例子。

Categorical state sequence analysis and regression tree to identify determinants of care trajectory in chronic disease: Example of end-stage renal disease.

机构信息

1 Univ Rennes, EHESP, REPERES (Recherche en Pharmaco-épidémiologie et Recours aux Soins) - EA 7449, Rennes, France.

2 CHU Pontchaillou, Service de Néphrologie, Rennes, France.

出版信息

Stat Methods Med Res. 2019 Jun;28(6):1731-1740. doi: 10.1177/0962280218774811. Epub 2018 May 9.

Abstract

BACKGROUND

Patients with chronic diseases, like patients with end-stage renal disease (ESRD), have long history of care driven by multiple determinants (medical, social, economic, etc.). Although in most epidemiological studies, analyses of health care determinants are computed on single health care events using classical multivariate statistical regression methods. Only few studies have integrated the concept of treatment trajectories as a whole and studied their determinants.

METHODS

All 18- to 80-year-old incident ESRD patients who started dialysis in Ile-de-France or Bretagne between 2006 and 2009 and could be followed for a period of 48 months after initiation of a renal replacement therapy were included ( = 5568). Their care trajectories were defined as categorical state sequences. Associations between patients' characteristics and care trajectories were assessed using a regression tree model together with a discrepancy analysis.

RESULTS

On average, each patient experienced 1.56 different renal replacement therapies (min = 1; max = 5) during the 48 months of follow-up. About 55% of patients never changed treatment and only 1% tried three or more renal replacement therapy modalities. Twelve homogeneous care trajectory groups were identified. Covariates explained 12% of the discrepancy between groups, particularly age, regions and initiation of hemodialysis with a catheter.

CONCLUSIONS

Regression tree analysis of categorical state sequence highlighted geographical disparities in the care trajectory of French patients with ESRD that cannot be observed when focusing on a single outcome, such as survival. This method is an original tool to visualize and characterize care trajectories, notably in the context of chronic condition like ESRD.

摘要

背景

患有慢性病的患者,如终末期肾病(ESRD)患者,其治疗历史较长,受到多种因素(医疗、社会、经济等)的影响。尽管在大多数流行病学研究中,使用经典的多变量统计回归方法对单一医疗保健事件进行了医疗保健决定因素的分析。但只有少数研究将治疗轨迹的概念作为一个整体进行了整合,并研究了其决定因素。

方法

本研究纳入了 2006 年至 2009 年期间在法兰西岛或布列塔尼开始透析的所有 18 至 80 岁的 ESRD 新发病例患者,并在开始肾脏替代治疗后可随访 48 个月(n=5568)。他们的护理轨迹被定义为分类状态序列。使用回归树模型和差异分析评估患者特征与护理轨迹之间的关联。

结果

平均而言,每位患者在 48 个月的随访期间经历了 1.56 种不同的肾脏替代治疗(最小=1;最大=5)。约 55%的患者从未改变治疗方法,只有 1%的患者尝试了三种或更多种肾脏替代疗法。确定了 12 个同质的护理轨迹组。协变量解释了组间差异的 12%,特别是年龄、地区和导管开始的血液透析。

结论

对分类状态序列的回归树分析突出了法国 ESRD 患者护理轨迹的地域差异,而当关注单一结局(如生存)时,这些差异是无法观察到的。这种方法是可视化和描述护理轨迹的原始工具,特别是在 ESRD 等慢性疾病的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验