Suppr超能文献

自报告和自调节液晶。

Self-reporting and self-regulating liquid crystals.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2018 May;557(7706):539-544. doi: 10.1038/s41586-018-0098-y. Epub 2018 May 9.

Abstract

Liquid crystals (LCs) are anisotropic fluids that combine the long-range order of crystals with the mobility of liquids. This combination of properties has been widely used to create reconfigurable materials that optically report information about their environment, such as changes in electric fields (smart-phone displays) , temperature (thermometers) or mechanical shear , and the arrival of chemical and biological stimuli (sensors). An unmet need exists, however, for responsive materials that not only report their environment but also transform it through self-regulated chemical interactions. Here we show that a range of stimuli can trigger pulsatile (transient) or continuous release of microcargo (aqueous microdroplets or solid microparticles and their chemical contents) that is trapped initially within LCs. The resulting LC materials self-report and self-regulate their chemical response to targeted physical, chemical and biological events in ways that can be preprogrammed through an interplay of elastic, electrical double-layer, buoyant and shear forces in diverse geometries (such as wells, films and emulsion droplets). These LC materials can carry out complex functions that go beyond the capabilities of conventional materials used for controlled microcargo release, such as optically reporting a stimulus (for example, mechanical shear stresses generated by motile bacteria) and then responding in a self-regulated manner via a feedback loop (for example, to release the minimum amount of biocidal agent required to cause bacterial cell death).

摘要

液晶(LC)是各向异性的流体,它结合了晶体的长程有序和液体的流动性。这种性质的结合已被广泛用于创建可重构材料,这些材料可以通过光报告有关其环境的信息,例如电场变化(智能手机显示屏)、温度(温度计)或机械剪切以及化学和生物刺激物的到来(传感器)。然而,存在一种未满足的需求,即需要响应性材料,这些材料不仅可以报告其环境,还可以通过自调节的化学相互作用来改变环境。在这里,我们展示了一系列刺激可以触发微载体(水性微滴或固体微颗粒及其化学内容物)的脉冲(瞬态)或连续释放,这些微载体最初被困在液晶中。由此产生的液晶材料可以自我报告并自我调节其对靶向物理、化学和生物事件的化学响应,这种响应可以通过不同几何形状(如井、薄膜和乳液液滴)中的弹性、双电层、浮力和剪切力的相互作用预先编程。这些液晶材料可以执行复杂的功能,超越了用于控制微载体释放的传统材料的能力,例如光学报告刺激(例如,由运动细菌产生的机械剪切应力),然后通过反馈环以自调节的方式响应(例如,释放杀死细菌所需的最小量的杀菌剂)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验