Suppr超能文献

平流层水与臭氧卫星均一化(SWOOSH)数据库:一个用于气候研究的长期数据库。

The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies.

作者信息

Davis Sean M, Rosenlof Karen H, Hassler Birgit, Hurst Dale F, Read William G, Vömel Holger, Selkirk Henry, Fujiwara Masatomo, Damadeo Robert

机构信息

NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA.

Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA.

出版信息

Earth Syst Sci Data. 2016;8(2):461-490. doi: 10.5194/essd-8-461-2016. Epub 2016 Sep 28.

Abstract

In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX.

摘要

在本文中,我们描述了平流层水和臭氧卫星均质化(SWOOSH)数据库的构建,该数据库包含自20世纪80年代以来运行的一部分边缘探测卫星仪器的垂直分辨臭氧和水汽数据。SWOOSH的主要产品是压力层(从316到1百帕,每十年12层)上水汽和臭氧混合比的纬向平均月平均时间序列。SWOOSH压力层产品以几个独立的纬向平均网格(2.5°、5°和10°)提供,其他产品包括两个粗略的三维网格(经度30°×纬度10°、20°×5°)以及一个纬向平均等熵产品。SWOOSH包括单个卫星源数据以及一个合并数据产品。合并产品的一个关键方面是,源记录经过均质化处理,以消除卫星间偏差,并尽量减少记录中的人为跳跃。我们描述了SWOOSH均质化过程,该过程涉及在仪器重叠时间段内利用同步观测将卫星数据记录调整到一颗“参考”卫星。参考卫星是根据与基于气球的独立探空测量的最佳一致性来选择的,目标是生成一个长期数据记录,该记录既均匀(即时间上的人为跳跃最小)又准确(即无偏差)。本文详细介绍了在构建组合SWOOSH产品过程中参考测量的选择、均质化和网格化过程,还展示了存储在SWOOSH中的辅助信息,这些信息可用于未来水汽和臭氧变率的研究。此外,还讨论了组合SWOOSH记录中的不确定性,并提供了SWOOSH记录的示例,以说明其在年际到年代际时间尺度上用于臭氧和水汽变率研究的情况。SWOOSH 2.5版本的数据可在doi:10.7289/V5TD9VBX上公开获取。

相似文献

4
Revisiting the mystery of recent stratospheric temperature trends.重新审视近期平流层温度趋势之谜。
Geophys Res Lett. 2018 Sep 28;45(18):9919-9933. doi: 10.1029/2018GL078035. Epub 2018 Jun 4.
10
Impact of the Hunga Tonga volcanic eruption on stratospheric composition.洪阿汤加火山喷发对平流层成分的影响。
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2301994120. doi: 10.1073/pnas.2301994120. Epub 2023 Oct 30.

引用本文的文献

3
Stratospheric water vapor affecting atmospheric circulation.平流层水汽影响大气环流。
Nat Commun. 2023 Jul 3;14(1):3925. doi: 10.1038/s41467-023-39559-2.

本文引用的文献

6
Unprecedented Arctic ozone loss in 2011.2011 年出现史无前例的北极臭氧损耗。
Nature. 2011 Oct 2;478(7370):469-75. doi: 10.1038/nature10556.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验