Townson Reid, Egglestone Hilary, Zavgorodni Sergei
Measurement Science and Standards, National Research Council Canada, Ottawa, ON, Canada.
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
J Appl Clin Med Phys. 2018 Jul;19(4):26-34. doi: 10.1002/acm2.12343. Epub 2018 May 9.
Modern radiotherapy techniques involve routine use of volumetric arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) with jaw-tracking - dynamic motion of the secondary collimators (jaws) in tandem with multi-leaf collimators (MLCs). These modalities require accurate dose calculations for the purposes of treatment planning and dose verification. Monte Carlo (MC) methods for radiotherapy dose calculation are widely accepted as capable of achieving high accuracy. This paper presents an efficiency-enhancement method for secondary collimator modeling, presented in the context of a tool for MC-based dose second checks. The model constitutes an accuracy trade-off in the source model for the sake of efficiency enhancement, but maintains the advantages of MC transport in patient heterogeneities. The secondary collimator model is called Flat-Absorbing-Jaw-Tracking (FAJT). Transmission through and scatter from the secondary collimators is neglected, and jaws are modeled as perfectly absorbing planes. To couple the motion of secondary collimators with MLCs for jaw-tracking, the FAJT model was built into the VCU-MLC model. Gamma-index analysis of the dose distributions from FAJT against the full BEAMnrc MC simulations showed over 99% pass rate for a range of open fields, two clinical IMRT, and one VMAT treatment plan, for 2%/2 mm criteria above 10%. Using FAJT, the simulation speed of the secondary collimators for open fields increased by a factor of 237, 1489, and 1395 for 4 × 4, 10 × 10, and 30 × 30 cm , respectively. In general, clinically oriented simulation times are reduced from "hours" to "minutes" on identical hardware. Results for nine representative clinical cases (seven with jaw-tracking) are presented. The average 2%/2 mm γ-test success rate above the 80% isodose was 96.8% when tested against the EPIDose electronic portal image-based dose reconstruction method and 97.3% against the Eclipse analytical anisotropic algorithm.
现代放射治疗技术包括常规使用容积弧形调强放疗(VMAT)和调强放疗(IMRT),并结合颌部追踪——二级准直器(颌)与多叶准直器(MLC)协同进行动态运动。这些模式需要进行精确的剂量计算,以用于治疗计划和剂量验证。放射治疗剂量计算的蒙特卡罗(MC)方法被广泛认为能够实现高精度。本文介绍了一种用于二级准直器建模的效率增强方法,该方法是在基于MC的剂量二次检查工具的背景下提出的。为了提高效率,该模型在源模型中进行了精度权衡,但保留了MC在患者异质性方面的传输优势。二级准直器模型称为扁平吸收式颌部追踪(FAJT)。忽略了通过二级准直器的透射和散射,颌被建模为完全吸收平面。为了将二级准直器的运动与用于颌部追踪的MLC耦合,将FAJT模型构建到VCU-MLC模型中。针对一系列开放野、两个临床IMRT和一个VMAT治疗计划,对FAJT的剂量分布与完整的BEAMnrc MC模拟进行伽马指数分析,结果显示,对于10%以上的2%/2毫米标准,通过率超过99%。使用FAJT,4×4、10×10和30×30厘米开放野的二级准直器模拟速度分别提高了237倍、1489倍和1395倍。一般来说,在相同硬件上,面向临床的模拟时间从“小时”减少到了“分钟”。给出了九个代表性临床病例(七个有颌部追踪)的结果。与基于电子门静脉图像的剂量重建方法EPIDose相比,在80%等剂量线以上的平均2%/2毫米伽马测试成功率为96.8%;与Eclipse分析各向异性算法相比,成功率为97.3%。