Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut, Germany.
Humboldt-Univ. zu Berlin, Germany.
J Biomed Opt. 2018 May;23(9):1-8. doi: 10.1117/1.JBO.23.9.091409.
We address the automatic differentiation of human tissue using multispectral imaging with promising potential for automatic visualization during surgery. Currently, tissue types have to be continuously differentiated based on the surgeon's knowledge only. Further, automatic methods based on optical in vivo properties of human tissue do not yet exist, as these properties have not been sufficiently examined. To overcome this, we developed a hyperspectral camera setup to monitor the different optical behavior of tissue types in vivo. The aim of this work is to collect and analyze these behaviors to open up optical opportunities during surgery. Our setup uses a digital camera and several bandpass filters in front of the light source to illuminate different tissue types with 16 specific wavelength ranges. We analyzed the different intensities of eight healthy tissue types over the visible spectrum (400 to 700 nm). Using our setup and sophisticated postprocessing in order to handle motion during capturing, we are able to find tissue characteristics not visible for the human eye to differentiate tissue types in the 16-dimensional wavelength domain. Our analysis shows that this approach has the potential to support the surgeon's decisions during treatment.
我们利用多光谱成像技术来解决人体组织的自动识别问题,该技术在手术中具有自动可视化的巨大潜力。目前,组织类型必须仅依靠外科医生的知识进行持续区分。此外,由于人体组织的光学固有特性尚未得到充分研究,基于这些固有特性的自动方法尚不存在。为了克服这一问题,我们开发了一种高光谱相机系统,以监测组织类型在体内的不同光学行为。这项工作的目的是收集和分析这些行为,以在手术中开辟光学机会。我们的系统使用数码相机和光源前的几个带通滤波器,用 16 个特定的波长范围来照射不同的组织类型。我们分析了在可见光谱(400 到 700nm)范围内的八种健康组织类型的不同强度。通过使用我们的系统和复杂的后期处理来处理拍摄过程中的运动,我们能够找到人眼无法分辨的组织特征,从而在 16 维波长域中区分组织类型。我们的分析表明,这种方法有可能支持外科医生在治疗过程中的决策。