Suppr超能文献

基于去相关颜色空间的食管癌视频胶囊内镜窄带成像算法评估

Assessment of Narrow Band Imaging Algorithm for Video Capsule Endoscopy Based on Decorrelated Color Space for Esophageal Cancer.

作者信息

Yang Kai-Yao, Fang Yu-Jen, Karmakar Riya, Mukundan Arvind, Tsao Yu-Ming, Huang Chien-Wei, Wang Hsiang-Chen

机构信息

Department of Medical Material Research, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung City 80284, Taiwan.

Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, No. 579, Sec. 2, Yunlin Rd., Dou-Liu 64041, Taiwan.

出版信息

Cancers (Basel). 2023 Sep 25;15(19):4715. doi: 10.3390/cancers15194715.

Abstract

Video capsule endoscopy (VCE) is increasingly used to decrease discomfort among patients owing to its small size. However, VCE has a major drawback of not having narrow band imaging (NBI) functionality. The current VCE has the traditional white light imaging (WLI) only, which has poor performance in the computer-aided detection (CAD) of different types of cancer compared to NBI. Specific cancers, such as esophageal cancer (EC), do not exhibit any early biomarkers, making their early detection difficult. In most cases, the symptoms are unnoticeable, and EC is diagnosed only in later stages, making its 5-year survival rate below 20% on average. NBI filters provide particular wavelengths that increase the contrast and enhance certain features of the mucosa, thereby enabling early identification of EC. However, VCE does not have a slot for NBI functionality because its size cannot be increased. Hence, NBI image conversion from WLI can presently only be achieved in post-processing. In this study, a complete arithmetic assessment of the decorrelated color space was conducted to generate NBI images from WLI images for VCE of the esophagus. Three parameters, structural similarity index metric (SSIM), entropy, and peak-signal-to-noise ratio (PSNR), were used to assess the simulated NBI images. Results show the good performance of the NBI image reproduction method with SSIM, entropy difference, and PSNR values of 93.215%, 4.360, and 28.064 dB, respectively.

摘要

视频胶囊内镜检查(VCE)因其体积小,越来越多地用于减轻患者的不适。然而,VCE有一个主要缺点,即不具备窄带成像(NBI)功能。当前的VCE仅具有传统的白光成像(WLI),与NBI相比,其在不同类型癌症的计算机辅助检测(CAD)中性能较差。特定的癌症,如食管癌(EC),不表现出任何早期生物标志物,这使得其早期检测变得困难。在大多数情况下,症状不明显,EC只有在晚期才被诊断出来,其5年平均生存率低于20%。NBI滤光片提供特定波长,可增加对比度并增强粘膜的某些特征,从而能够早期识别EC。然而,VCE没有用于NBI功能的插槽,因为其尺寸无法增大。因此,目前只能在后期处理中实现从WLI到NBI图像的转换。在本研究中,对去相关颜色空间进行了完整的算术评估,以从食管VCE的WLI图像生成NBI图像。使用结构相似性指数度量(SSIM)、熵和峰值信噪比(PSNR)三个参数来评估模拟的NBI图像。结果表明,NBI图像再现方法具有良好的性能,SSIM、熵差和PSNR值分别为93.215%、4.360和28.064 dB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5344/10571786/bc001ec163de/cancers-15-04715-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验