Suppr超能文献

使用扫描流式细胞仪、机器学习和无监督聚类技术定量测定浮游植物群落和功能群的细胞密度和生物体积。

Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering.

机构信息

Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

出版信息

PLoS One. 2018 May 10;13(5):e0196225. doi: 10.1371/journal.pone.0196225. eCollection 2018.

Abstract

Scanning flow cytometry (SFCM) is characterized by the measurement of time-resolved pulses of fluorescence and scattering, enabling the high-throughput quantification of phytoplankton morphology and pigmentation. Quantifying variation at the single cell and colony level improves our ability to understand dynamics in natural communities. Automated high-frequency monitoring of these communities is presently limited by the absence of repeatable, rapid protocols to analyse SFCM datasets, where images of individual particles are not available. Here we demonstrate a repeatable, semi-automated method to (1) rapidly clean SFCM data from a phytoplankton community by removing signals that do not belong to live phytoplankton cells, (2) classify individual cells into trait clusters that correspond to functional groups, and (3) quantify the biovolumes of individual cells, the total biovolume of the whole community and the total biovolumes of the major functional groups. Our method involves the development of training datasets using lab cultures, the use of an unsupervised clustering algorithm to identify trait clusters, and machine learning tools (random forests) to (1) evaluate variable importance, (2) classify data points, and (3) estimate biovolumes of individual cells. We provide example datasets and R code for our analytical approach that can be adapted for analysis of datasets from other flow cytometers or scanning flow cytometers.

摘要

扫描流式细胞术(SFCM)的特点是测量时间分辨的荧光和散射脉冲,能够高通量定量浮游植物的形态和色素。在单细胞和群体水平上量化变异可以提高我们理解自然群落动态的能力。目前,由于缺乏可重复、快速的分析 SFCM 数据集的协议,自动化高频监测这些群落受到限制,因为无法获得单个颗粒的图像。在这里,我们展示了一种可重复的、半自动的方法,可以(1)通过去除不属于活浮游植物细胞的信号来快速清理浮游植物群落的 SFCM 数据,(2)将单个细胞分类为对应于功能组的特征聚类,(3)量化单个细胞的生物体积、整个群落的总生物体积和主要功能组的总生物体积。我们的方法涉及使用实验室培养物开发训练数据集,使用无监督聚类算法识别特征聚类,以及机器学习工具(随机森林)来(1)评估变量重要性,(2)分类数据点,以及(3)估计单个细胞的生物体积。我们提供了我们分析方法的示例数据集和 R 代码,可以适应其他流式细胞仪或扫描流式细胞仪的数据集分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e39/5945019/c0d05c76d958/pone.0196225.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验