Suppr超能文献

自动化评估小鼠脂肪肝中的脂肪变性。

Automated assessment of steatosis in murine fatty liver.

机构信息

Department of Computer and Information Science, Indiana University Purdue University-Indianapolis, Indiana, United States of America.

Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.

出版信息

PLoS One. 2018 May 10;13(5):e0197242. doi: 10.1371/journal.pone.0197242. eCollection 2018.

Abstract

Although mice are commonly used to study different aspects of fatty liver disease, currently there are no validated fully automated methods to assess steatosis in mice. Accurate detection of macro- and microsteatosis in murine models of fatty liver disease is important in studying disease pathogenesis and detecting potential hepatotoxic signature during drug development. Further, precise quantification of macrosteatosis is essential for quantifying effects of therapies. Here, we develop and validate the performance of automated classifiers built using image processing and machine learning methods for detection of macro- and microsteatosis in murine fatty liver disease and study the correlation of automated quantification of macrosteatosis with expert pathologist's semi-quantitative grades. The analysis is performed on digital images of 27 Hematoxylin & Eosin stained murine liver biopsy samples. An expert liver pathologist scored the amount of macrosteatosis and also annotated macro- and microsteatosis lesions on the biopsy images using a web-application. Using these annotations, supervised machine learning and image processing techniques, we created classifiers to detect macro- and microsteatosis. For macrosteatosis prediction, the model's precision, sensitivity and area under the receiver operator characteristic (AUROC) were 94.2%, 95%, 99.1% respectively. When correlated with pathologist's semi-quantitative grade of steatosis, the model fits with a coefficient of determination value of 0.905. For microsteatosis prediction, the model has precision, sensitivity and AUROC of 79.2%, 77%, 78.1% respectively. Validation by the expert pathologist of classifier's predictions made on unseen images of biopsy samples showed 100% and 63% accuracy for macro- and microsteatosis, respectively. This novel work demonstrates that fully automated assessment of steatosis is feasible in murine liver biopsies images. Our classifier has excellent sensitivity and accuracy for detection of macrosteatosis in murine fatty liver disease.

摘要

虽然小鼠常用于研究脂肪肝疾病的不同方面,但目前还没有经过验证的全自动方法来评估小鼠的脂肪变性。在研究疾病发病机制和检测药物开发过程中潜在的肝毒性特征时,准确检测小鼠脂肪肝模型中的大、小脂肪变性非常重要。此外,大脂肪变性的精确定量对于量化治疗效果至关重要。在这里,我们开发并验证了使用图像处理和机器学习方法构建的自动分类器在检测小鼠脂肪肝疾病中大、小脂肪变性方面的性能,并研究了大脂肪变性的自动定量与专家病理学家半定量评分之间的相关性。分析是在 27 张苏木精和曙红染色的小鼠肝活检样本的数字图像上进行的。一位肝脏病理专家对大脂肪变性的程度进行了评分,并使用网络应用程序对活检图像上的大、小脂肪变性病变进行了注释。使用这些注释、有监督的机器学习和图像处理技术,我们创建了分类器来检测大、小脂肪变性。对于大脂肪变性预测,模型的精度、敏感性和接收器操作特性曲线下的面积(AUROC)分别为 94.2%、95%、99.1%。当与病理学家的脂肪变性半定量评分相关时,模型的拟合度决定系数值为 0.905。对于小脂肪变性预测,模型的精度、敏感性和 AUROC 分别为 79.2%、77%、78.1%。对活检样本未见图像分类器预测的专家病理学家验证表明,大、小脂肪变性的准确率分别为 100%和 63%。这项新工作表明,在小鼠肝活检图像中进行完全自动化的脂肪变性评估是可行的。我们的分类器在检测小鼠脂肪肝疾病中的大脂肪变性方面具有出色的敏感性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f37/5945052/342da8b083d2/pone.0197242.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验