Computer Engineering Lab, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands; Bluebee, Laan van Zuid Hoorn 57, 2289 DC Rijswijk, The Netherlands.
Bluebee, Laan van Zuid Hoorn 57, 2289 DC Rijswijk, The Netherlands.
Comput Biol Chem. 2018 Aug;75:54-64. doi: 10.1016/j.compbiolchem.2018.03.024. Epub 2018 Apr 12.
We present our work on hardware accelerated genomics pipelines, using either FPGAs or GPUs to accelerate execution of BWA-MEM, a widely-used algorithm for genomic short read mapping. The mapping stage can take up to 40% of overall processing time for genomics pipelines. Our implementation offloads the Seed Extension function, one of the main BWA-MEM computational functions, onto an accelerator. Sequencers typically output reads with a length of 150 base pairs. However, read length is expected to increase in the near future. Here, we investigate the influence of read length on BWA-MEM performance using data sets with read length up to 400 base pairs, and introduce methods to ameliorate the impact of longer read length. For the industry-standard 150 base pair read length, our implementation achieves an up to two-fold increase in overall application-level performance for systems with at most twenty-two logical CPU cores. Longer read length requires commensurately bigger data structures, which directly impacts accelerator efficiency. The two-fold performance increase is sustained for read length of at most 250 base pairs. To improve performance, we perform a classification of the inefficiency of the underlying systolic array architecture. By eliminating idle regions as much as possible, efficiency is improved by up to +95%. Moreover, adaptive load balancing intelligently distributes work between host and accelerator to ensure use of an accelerator always results in performance improvement, which in GPU-constrained scenarios provides up to +45% more performance.
我们介绍了使用 FPGA 或 GPU 加速 BWA-MEM 的硬件加速基因组学管道的工作,BWA-MEM 是一种广泛用于基因组短读映射的算法。映射阶段可能占基因组学管道总处理时间的 40%。我们的实现将 Seed Extension 功能(BWA-MEM 的主要计算功能之一)卸载到加速器上。测序仪通常输出长度为 150 个碱基对的读取。然而,读取长度预计在不久的将来会增加。在这里,我们使用长度达 400 个碱基对的数据集研究了读取长度对 BWA-MEM 性能的影响,并介绍了改善更长读取长度影响的方法。对于行业标准的 150 个碱基对读取长度,我们的实现对于最多具有二十二个逻辑 CPU 内核的系统,在整体应用程序级别性能方面提高了高达两倍。更长的读取长度需要相应更大的数据结构,这直接影响加速器的效率。在读取长度最大为 250 个碱基对的情况下,性能提高持续两倍。为了提高性能,我们对底层脉动阵列架构的效率低下进行了分类。通过尽可能消除空闲区域,效率提高了+95%。此外,自适应负载平衡智能地在主机和加速器之间分配工作,以确保使用加速器始终能提高性能,在 GPU 受限的情况下,性能提高了高达+45%。