Suppr超能文献

TG2 通过对 HSF1 的翻译后修饰来调节热休克反应。

TG2 regulates the heat-shock response by the post-translational modification of HSF1.

机构信息

Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.

Division of Genetics and Cell Biology, European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy.

出版信息

EMBO Rep. 2018 Jul;19(7). doi: 10.15252/embr.201745067. Epub 2018 May 11.

Abstract

Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.

摘要

热休克因子 1(HSF1)是调节蛋白毒性应激反应的主要转录因子,通过控制许多应激反应基因的转录来实现,包括热休克蛋白。在这里,我们展示了一种控制 HSF1 激活的新分子机制。我们证明,依赖于其蛋白二硫键异构酶活性的转谷氨酰胺酶 2(TG2)触发 HSF1 的三聚化和激活,从而调节对应激和蛋白质稳态损伤的适应。具体而言,我们发现 TG2 功能丧失与 HSF1 的核易位和其与 HSP70 启动子的 DNA 结合能力缺陷相关。我们表明,TG2 的抑制作用恢复了囊性纤维化(CF)中 HSF1-HSP70 途径的失衡,CF 是一种以蛋白质稳态失调为特征的人类疾病。在缺乏 TG2 的新型实验性 CF 小鼠模型中,TG2 的缺失导致 CFTR 功能增加约 40%。总之,这些结果表明,在应激细胞条件下,TG2 通过调节热休克反应在细胞蛋白质稳态的调节中发挥关键作用。

相似文献

1
TG2 regulates the heat-shock response by the post-translational modification of HSF1.
EMBO Rep. 2018 Jul;19(7). doi: 10.15252/embr.201745067. Epub 2018 May 11.
2
The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2.
Int J Mol Sci. 2021 Jun 14;22(12):6366. doi: 10.3390/ijms22126366.
3
Transglutaminase Type 2 regulates the Wnt/β-catenin pathway in vertebrates.
Cell Death Dis. 2021 Mar 5;12(3):249. doi: 10.1038/s41419-021-03485-2.
6
Heat shock transcription factor 1 is SUMOylated in the activated trimeric state.
J Biol Chem. 2021 Jan-Jun;296:100324. doi: 10.1016/j.jbc.2021.100324. Epub 2021 Jan 23.
7
Hsf1 on a leash - controlling the heat shock response by chaperone titration.
Exp Cell Res. 2020 Nov 1;396(1):112246. doi: 10.1016/j.yexcr.2020.112246. Epub 2020 Aug 27.
9
An HSF1-JMJD6-HSP feedback circuit promotes cell adaptation to proteotoxic stress.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2313370121. doi: 10.1073/pnas.2313370121. Epub 2024 Jul 10.
10
Protein Misfolding Releases Human HSF1 from HSP70 Latency Control.
J Mol Biol. 2024 Oct 15;436(20):168740. doi: 10.1016/j.jmb.2024.168740. Epub 2024 Aug 8.

引用本文的文献

1
Epigenetic modulation of RIPK3 by transglutaminase 2-dependent serotonylation of H3K4me3 affects necroptosis.
Cell Mol Life Sci. 2025 Apr 10;82(1):154. doi: 10.1007/s00018-025-05640-w.
2
Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates.
JACS Au. 2025 Jan 30;5(2):606-617. doi: 10.1021/jacsau.4c00578. eCollection 2025 Feb 24.
3
Transglutaminase 2 regulates endothelial cell calcification via IL-6-mediated autophagy.
Front Pharmacol. 2024 Nov 25;15:1393534. doi: 10.3389/fphar.2024.1393534. eCollection 2024.
4
Immunomodulatory effects of cysteamine and its potential use as a host-directed therapy for tuberculosis.
Front Immunol. 2024 Oct 28;15:1411827. doi: 10.3389/fimmu.2024.1411827. eCollection 2024.
6
The Role of Transglutaminase 2 in Cancer: An Update.
Int J Mol Sci. 2024 Feb 28;25(5):2797. doi: 10.3390/ijms25052797.
7
Transglutaminase Type 2-MITF axis regulates phenotype switching in skin cutaneous melanoma.
Cell Death Dis. 2023 Oct 28;14(10):704. doi: 10.1038/s41419-023-06223-y.
8
The STING/TBK1/IRF3/IFN type I pathway is defective in cystic fibrosis.
Front Immunol. 2023 Feb 27;14:1093212. doi: 10.3389/fimmu.2023.1093212. eCollection 2023.
9
Type 2 transglutaminase in the nucleus: the new epigenetic face of a cytoplasmic enzyme.
Cell Mol Life Sci. 2023 Jan 25;80(2):52. doi: 10.1007/s00018-023-04698-8.

本文引用的文献

1
Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation.
PLoS Genet. 2017 Jul 5;13(7):e1006849. doi: 10.1371/journal.pgen.1006849. eCollection 2017 Jul.
3
Identification of DNAJA1 as a novel interacting partner and a substrate of human transglutaminase 2.
Biochem J. 2016 Nov 1;473(21):3889-3901. doi: 10.1042/BCJ20160440. Epub 2016 Aug 22.
4
Transglutaminase type 2: A multifunctional protein chaperone?
Mol Cell Oncol. 2014 Dec 31;1(4):e968506. doi: 10.4161/23723548.2014.968506. eCollection 2014 Oct-Dec.
5
Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions.
Biochim Biophys Acta. 2016 Aug;1863(8):2084-92. doi: 10.1016/j.bbamcr.2016.05.005. Epub 2016 May 8.
7
Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis.
Mol Cell Pediatr. 2016 Dec;3(1):13. doi: 10.1186/s40348-016-0040-z. Epub 2016 Mar 14.
8
The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation.
Oncotarget. 2015 Dec 29;6(42):44941-54. doi: 10.18632/oncotarget.6759.
9
CHIP-mediated degradation of transglutaminase 2 negatively regulates tumor growth and angiogenesis in renal cancer.
Oncogene. 2016 Jul 14;35(28):3718-28. doi: 10.1038/onc.2015.439. Epub 2015 Nov 16.
10
BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.
Biochem Biophys Res Commun. 2015 Aug 21;464(2):561-7. doi: 10.1016/j.bbrc.2015.07.006. Epub 2015 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验