College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK.
Sci Rep. 2016 Jul 7;6:29215. doi: 10.1038/srep29215.
Surgery is a valuable option for pharmacologically intractable epilepsy. However, significant post-operative improvements are not always attained. This is due in part to our incomplete understanding of the seizure generating (ictogenic) capabilities of brain networks. Here we introduce an in silico, model-based framework to study the effects of surgery within ictogenic brain networks. We find that factors conventionally determining the region of tissue to resect, such as the location of focal brain lesions or the presence of epileptiform rhythms, do not necessarily predict the best resection strategy. We validate our framework by analysing electrocorticogram (ECoG) recordings from patients who have undergone epilepsy surgery. We find that when post-operative outcome is good, model predictions for optimal strategies align better with the actual surgery undertaken than when post-operative outcome is poor. Crucially, this allows the prediction of optimal surgical strategies and the provision of quantitative prognoses for patients undergoing epilepsy surgery.
手术是治疗药物难治性癫痫的一种有效方法。然而,术后的显著改善并不总是能够实现。这部分是由于我们对脑网络产生癫痫(致痫)能力的理解还不完整。在这里,我们引入了一种基于模型的计算框架来研究手术对致痫性脑网络的影响。我们发现,传统上决定要切除的组织区域的因素,如局灶性脑损伤的位置或癫痫样节律的存在,并不一定能预测最佳的切除策略。我们通过分析接受癫痫手术的患者的脑电描记图(ECoG)记录来验证我们的框架。我们发现,当术后结果良好时,最佳策略的模型预测与实际进行的手术更为一致,而当术后结果较差时则不然。至关重要的是,这使得能够预测最佳手术策略,并为接受癫痫手术的患者提供定量预后。