Suppr超能文献

The steady state intermediate of scallop smooth muscle myosin ATPase and effect of light chain phosphorylation. A molecular mechanism for catch contraction.

作者信息

Takahashi M, Sohma H, Morita F

机构信息

Department of Chemistry, Faculty of Science, Hokkaido University.

出版信息

J Biochem. 1988 Jul;104(1):102-7. doi: 10.1093/oxfordjournals.jbchem.a122402.

Abstract

The ATP-induced difference UV-absorption spectrum of myosin isolated from the opaque portion of scallop smooth muscle (opaque myosin) was Ca2+-sensitive at 40 mM KCl and 1.5 M sucrose. On adding sucrose to 1.5 M, the turbidity of myosin decreased to 24% and the characteristic two forms of the difference spectrum, the ATP-form and ADP-form (Morita, F. (1967) J. Biol. Chem. 242, 4501-4506), were distinguishable. In the presence of Ca2+, the difference spectrum was the ATP-form first and then decayed into the ADP-form with the depletion of ATP. In the absence of Ca2+, however, only the ADP-form was observed. The ADP-form observed in the absence of Ca2+ returned to the ATP-form when the regulatory light chain-a (RLC-a), one of the regulatory light chains of opaque myosin, was phosphorylated. These results suggest that the main intermediate at the steady state of opaque myosin ATPase is converted depending on the concentration of Ca2+, from EPADP in the presence of Ca2+ to EADP in the absence of Ca2+. It changes to EPADP in the absence of Ca2+ on the phosphorylation of RLC-a. Consistent results were obtained by measuring the ATP-induced Trp-fluorescence increase of opaque myosin in the absence of sucrose. Since the opaque portion of scallop smooth muscle is known to be responsible for catch contraction (Ruegg, J.C. (1961) Proc. R. Soc. London Ser. B 154, 224-249), these findings lead us to suppose that the opaque myosin in vivo may stay in the E.ADP complex during the catch state. It changes to EPADP by the phosphorylation of RLC-a, which may terminate the catch state.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验