Suppr超能文献

软体动物“抓握”肌肉的高效保持功能不是基于肌球蛋白头部减速的横桥循环。

The highly efficient holding function of the mollusc 'catch' muscle is not based on decelerated myosin head cross-bridge cycles.

机构信息

Department of Cell Biology, University of Salzburg, , Hellbrunnerstr. 34, A-5020 Salzburg, Austria.

出版信息

Proc Biol Sci. 2010 Mar 7;277(1682):803-8. doi: 10.1098/rspb.2009.1618. Epub 2009 Nov 11.

Abstract

Certain smooth muscles are able to reduce energy consumption greatly when holding without shortening. For instance, this is the case with muscles surrounding blood vessels used for regulating blood flow and pressure. The phenomenon is most conspicuous in 'catch' muscles of molluscs, which have been used as models for investigating this important physiological property of smooth muscle. When the shells of mussels are held closed, the responsible muscles enter the highly energy-efficient state of catch. According to the traditional view, the state of catch is caused by the slowing down of the force-generating cycles of the molecular motors, the myosin heads. Here, we show that catch can still be induced and maintained when the myosin heads are prevented from generating force. This new evidence proves that the long-held explanation of the state of catch being due to the slowing down of force producing myosin head cycles is not valid and that the highly economic holding state is caused by the formation of a rigid network of inter-myofilament connections based on passive molecular structures.

摘要

某些平滑肌在不缩短的情况下能够大大降低能量消耗。例如,血管周围用于调节血流量和血压的肌肉就是这种情况。这种现象在软体动物的“捕捉”肌肉中最为明显,这些肌肉被用作研究平滑肌这一重要生理特性的模型。当贻贝的贝壳被紧紧关闭时,负责的肌肉进入高度节能的捕捉状态。根据传统观点,捕捉状态是由产生力的分子马达,肌球蛋白头部的运动速度减慢引起的。在这里,我们表明,即使阻止肌球蛋白头部产生力,也可以诱导和维持捕捉状态。这一新的证据证明,长期以来关于捕捉状态是由于产生力的肌球蛋白头部循环速度减慢的解释是不正确的,而高度经济的保持状态是由基于被动分子结构的肌丝间连接的刚性网络的形成引起的。

相似文献

1
The highly efficient holding function of the mollusc 'catch' muscle is not based on decelerated myosin head cross-bridge cycles.
Proc Biol Sci. 2010 Mar 7;277(1682):803-8. doi: 10.1098/rspb.2009.1618. Epub 2009 Nov 11.
2
Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil. 2008;29(2-5):73-99. doi: 10.1007/s10974-008-9149-6. Epub 2008 Nov 28.
5
Twitchin as a regulator of catch contraction in molluscan smooth muscle.
J Muscle Res Cell Motil. 2005;26(6-8):455-60. doi: 10.1007/s10974-005-9029-2.
7
Mechanism of catch force: tethering of thick and thin filaments by twitchin.
J Biomed Biotechnol. 2010;2010:725207. doi: 10.1155/2010/725207. Epub 2010 Jun 23.
9
Myosin cross-bridge kinetics and the mechanism of catch.
Biophys J. 2007 Jul 15;93(2):554-65. doi: 10.1529/biophysj.107.105577. Epub 2007 Apr 27.
10
The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle.
Biophys J. 2001 Jan;80(1):415-26. doi: 10.1016/S0006-3495(01)76024-9.

引用本文的文献

1
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
2
Separate and combined effects of boat noise and a live crab predator on mussel valve gape behavior.
Behav Ecol. 2023 Apr 8;34(3):495-505. doi: 10.1093/beheco/arad012. eCollection 2023 May-Jun.
3
Skeletal Muscle Fibers Inspired Polymeric Actuator by Assembly of Triblock Polymers.
Adv Sci (Weinh). 2022 May;9(13):e2105764. doi: 10.1002/advs.202105764. Epub 2022 Mar 6.
4
The antipredator benefits of postural camouflage in peppered moth caterpillars.
Sci Rep. 2020 Dec 10;10(1):21654. doi: 10.1038/s41598-020-78686-4.
5
Dome-Patterned Metamaterial Sheets.
Adv Sci (Weinh). 2020 Oct 7;7(22):2001955. doi: 10.1002/advs.202001955. eCollection 2020 Nov.
6
Neural Control of Dynamic 3-Dimensional Skin Papillae for Cuttlefish Camouflage.
iScience. 2018 Mar 23;1:24-34. doi: 10.1016/j.isci.2018.01.001.
7
Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics.
BMC Genomics. 2018 May 22;19(1):377. doi: 10.1186/s12864-018-4770-2.
8
Serotonin modulates muscle function in the medicinal leech Hirudo verbana.
Biol Lett. 2011 Dec 23;7(6):885-8. doi: 10.1098/rsbl.2011.0303. Epub 2011 May 11.

本文引用的文献

1
The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13307-133310. doi: 10.1073/pnas.0902312106. Epub 2009 Jul 21.
3
Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge.
J Muscle Res Cell Motil. 2008;29(2-5):73-99. doi: 10.1007/s10974-008-9149-6. Epub 2008 Nov 28.
7
Catch force links and the low to high force transition of myosin.
Biophys J. 2006 May 1;90(9):3193-202. doi: 10.1529/biophysj.105.077453. Epub 2006 Feb 10.
8
Twitchin as a regulator of catch contraction in molluscan smooth muscle.
J Muscle Res Cell Motil. 2005;26(6-8):455-60. doi: 10.1007/s10974-005-9029-2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验