Suppr超能文献

生物碱、一氧化氮和亚硝酸盐还原酶:细胞生物能量学的进化偶联关键调节因子,特别是与人类微生物组相关。

Alkaloids, Nitric Oxide, and Nitrite Reductases: Evolutionary Coupling as Key Regulators of Cellular Bioenergetics with Special Relevance to the Human Microbiome.

机构信息

Department of Psychiatry, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic.

Center for Cognitive and Molecular Neuroscience, General University Hospital in Prague, Prague, Czech Republic.

出版信息

Med Sci Monit. 2018 May 14;24:3153-3158. doi: 10.12659/MSM.909409.

Abstract

Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating essential biological activities. The prototype opiate alkaloid morphine represents a low molecular mass heterocyclic compound that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule. As an essential corollary, positive evolutionary pressure has driven the development of a cognate 6-transmembrane helical (TMH) domain μ3 opiate receptor that is exclusively responsive to morphine and related opiate alkaloids. A key aspect of "morphinergic" signaling mediated by μ3 opiate receptor activation is its functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Importantly, tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions. Presently, our short review provides selective discussion of evolutionary development of morphine, opiate alkaloids, μ3 opiate receptors, and NO systems, within the perspectives of enhanced mitochondrial function, cellular bioenergetics, and the human microbiome.

摘要

真核细胞和原核细胞表达的典型生物碱是含有弱碱性氮基团的小杂环化合物,对于介导基本的生物活性至关重要。原型阿片生物碱吗啡代表一种低分子量杂环化合物,它已经从作为分泌性抗菌植物抗毒素的相对有限作用进化为广谱调节分子。作为一个必然的推论,积极的进化压力推动了同源 6 跨膜螺旋 (TMH) 结构域 μ3 阿片受体的发展,该受体专门对吗啡和相关阿片生物碱产生反应。μ3 阿片受体激活介导的“阿片能”信号的一个关键方面是其与利用组成型一氧化氮 (NO) 作为信号分子的调节途径的功能偶联。重要的是,线粒体中持续产生和脉冲式产生的 NO 对电子传递、H+泵送和 O2 消耗的速率产生深远的抑制作用。鉴于 NO 作为线粒体呼吸和细胞生物能选择性、时间限定的化学调节剂的多能作用,原核反硝化系统扩展到线粒体 NO/亚硝酸盐循环复合物代表了一系列具有存在意义的进化修饰。目前,我们的简短综述从增强的线粒体功能、细胞生物能和人类微生物组的角度,选择性地讨论了吗啡、阿片生物碱、μ3 阿片受体和 NO 系统的进化发展。

相似文献

3
Morphine stimulates nitric oxide release in human mitochondria.吗啡刺激人体线粒体释放一氧化氮。
J Bioenerg Biomembr. 2015 Oct;47(5):409-17. doi: 10.1007/s10863-015-9626-8. Epub 2015 Sep 9.
10
Dopamine, morphine, and nitric oxide: an evolutionary signaling triad.多巴胺、吗啡和一氧化氮:进化信号三联体。
CNS Neurosci Ther. 2010 Jun;16(3):e124-37. doi: 10.1111/j.1755-5949.2009.00114.x. Epub 2009 Nov 13.

引用本文的文献

本文引用的文献

3
Epigenetics: The third pillar of nitric oxide signaling.表观遗传学:一氧化氮信号传导的第三大支柱。
Pharmacol Res. 2017 Jul;121:52-58. doi: 10.1016/j.phrs.2017.04.011. Epub 2017 Apr 17.
8
Morphine stimulates nitric oxide release in human mitochondria.吗啡刺激人体线粒体释放一氧化氮。
J Bioenerg Biomembr. 2015 Oct;47(5):409-17. doi: 10.1007/s10863-015-9626-8. Epub 2015 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验