Suppr超能文献

基于深度卷积神经网络的转录因子结合位点碱基对分辨率检测。

Base-pair resolution detection of transcription factor binding site by deep deconvolutional network.

机构信息

Electrical and Computer Engineering Department, University of Texas at San Antonio, San Antonio, TX, USA.

Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA.

出版信息

Bioinformatics. 2018 Oct 15;34(20):3446-3453. doi: 10.1093/bioinformatics/bty383.

Abstract

MOTIVATION

Transcription factor (TF) binds to the promoter region of a gene to control gene expression. Identifying precise TF binding sites (TFBSs) is essential for understanding the detailed mechanisms of TF-mediated gene regulation. However, there is a shortage of computational approach that can deliver single base pair resolution prediction of TFBS.

RESULTS

In this paper, we propose DeepSNR, a Deep Learning algorithm for predicting TF binding location at Single Nucleotide Resolution de novo from DNA sequence. DeepSNR adopts a novel deconvolutional network (deconvNet) model and is inspired by the similarity to image segmentation by deconvNet. The proposed deconvNet architecture is constructed on top of 'DeepBind' and we trained the entire model using TF-specific data from ChIP-exonuclease (ChIP-exo) experiments. DeepSNR has been shown to outperform motif search-based methods for several evaluation metrics. We have also demonstrated the usefulness of DeepSNR in the regulatory analysis of TFBS as well as in improving the TFBS prediction specificity using ChIP-seq data.

AVAILABILITY AND IMPLEMENTATION

DeepSNR is available open source in the GitHub repository (https://github.com/sirajulsalekin/DeepSNR).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

转录因子 (TF) 结合到基因的启动子区域以控制基因表达。识别精确的 TF 结合位点 (TFBS) 对于理解 TF 介导的基因调控的详细机制至关重要。然而,缺乏能够提供单碱基分辨率的 TFBS 预测的计算方法。

结果

在本文中,我们提出了 DeepSNR,这是一种从 DNA 序列中从头预测 TF 结合位置的单核苷酸分辨率的深度学习算法。DeepSNR 采用了新颖的去卷积网络 (deconvNet) 模型,其灵感来自于 deconvNet 对图像分割的相似性。所提出的 deconvNet 架构构建在 'DeepBind' 之上,我们使用 ChIP-exonuclease (ChIP-exo) 实验中的 TF 特异性数据来训练整个模型。DeepSNR 在几个评估指标上都优于基于基序搜索的方法。我们还证明了 DeepSNR 在 TFBS 调控分析以及使用 ChIP-seq 数据提高 TFBS 预测特异性方面的有用性。

可用性和实现

DeepSNR 可在 GitHub 存储库(https://github.com/sirajulsalekin/DeepSNR)中获得开源。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

1
Base-pair resolution detection of transcription factor binding site by deep deconvolutional network.
Bioinformatics. 2018 Oct 15;34(20):3446-3453. doi: 10.1093/bioinformatics/bty383.
2
BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
Bioinformatics. 2015 Sep 1;31(17):2852-9. doi: 10.1093/bioinformatics/btv294. Epub 2015 May 7.
3
MACE: model based analysis of ChIP-exo.
Nucleic Acids Res. 2014 Nov 10;42(20):e156. doi: 10.1093/nar/gku846. Epub 2014 Sep 23.
4
Identification of transcription factor binding sites from ChIP-seq data at high resolution.
Bioinformatics. 2013 Nov 1;29(21):2705-13. doi: 10.1093/bioinformatics/btt470. Epub 2013 Aug 24.
6
NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
Bioinformatics. 2022 Oct 14;38(20):4762-4770. doi: 10.1093/bioinformatics/btac569.
10
ChIPulate: A comprehensive ChIP-seq simulation pipeline.
PLoS Comput Biol. 2019 Mar 21;15(3):e1006921. doi: 10.1371/journal.pcbi.1006921. eCollection 2019 Mar.

引用本文的文献

1
Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.
Bioinform Biol Insights. 2025 Feb 25;19:11779322251316130. doi: 10.1177/11779322251316130. eCollection 2025.
2
The evaluation of transcription factor binding site prediction tools in human and Arabidopsis genomes.
BMC Bioinformatics. 2024 Dec 2;25(1):371. doi: 10.1186/s12859-024-05995-0.
4
Predicting Transcription Factor Binding Sites with Deep Learning.
Int J Mol Sci. 2024 May 3;25(9):4990. doi: 10.3390/ijms25094990.
5
Knowledge graph embedding for profiling the interaction between transcription factors and their target genes.
PLoS Comput Biol. 2023 Jun 20;19(6):e1011207. doi: 10.1371/journal.pcbi.1011207. eCollection 2023 Jun.
6
NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
Bioinformatics. 2022 Oct 14;38(20):4762-4770. doi: 10.1093/bioinformatics/btac569.
8
Phage_UniR_LGBM: Phage Virion Proteins Classification with UniRep Features and LightGBM Model.
Comput Math Methods Med. 2022 Apr 15;2022:9470683. doi: 10.1155/2022/9470683. eCollection 2022.

本文引用的文献

1
DeeperBind: Enhancing Prediction of Sequence Specificities of DNA Binding Proteins.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:178-183. doi: 10.1109/bibm.2016.7822515. Epub 2017 Jan 19.
2
Early response index: a statistic to discover potential early stage disease biomarkers.
BMC Bioinformatics. 2017 Jun 23;18(1):313. doi: 10.1186/s12859-017-1712-y.
3
Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA.
Mol Cell. 2017 Jun 1;66(5):711-720.e3. doi: 10.1016/j.molcel.2017.05.004. Epub 2017 May 18.
4
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.
Nucleic Acids Res. 2016 Jun 20;44(11):e107. doi: 10.1093/nar/gkw226. Epub 2016 Apr 15.
5
Predicting effects of noncoding variants with deep learning-based sequence model.
Nat Methods. 2015 Oct;12(10):931-4. doi: 10.1038/nmeth.3547. Epub 2015 Aug 24.
6
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat Biotechnol. 2015 Aug;33(8):831-8. doi: 10.1038/nbt.3300. Epub 2015 Jul 27.
7
MACE: model based analysis of ChIP-exo.
Nucleic Acids Res. 2014 Nov 10;42(20):e156. doi: 10.1093/nar/gku846. Epub 2014 Sep 23.
9
Identification of transcription factor binding sites from ChIP-seq data at high resolution.
Bioinformatics. 2013 Nov 1;29(21):2705-13. doi: 10.1093/bioinformatics/btt470. Epub 2013 Aug 24.
10
Functional analysis of transcription factor binding sites in human promoters.
Genome Biol. 2012 Sep 26;13(9):R50. doi: 10.1186/gb-2012-13-9-r50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验