Suppr超能文献

随机非局部 Fisher 方程中的波前传播和聚类。

Front propagation and clustering in the stochastic nonlocal Fisher equation.

机构信息

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.

出版信息

Phys Rev E. 2018 Apr;97(4-1):042213. doi: 10.1103/PhysRevE.97.042213.

Abstract

In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

摘要

在这项工作中,我们研究了随机非局部 Fisher 方程中前沿传播和模式形成的问题。我们发现了两种模式之间的交叉:对于不太大范围的相互作用,存在一个稳定传播的模式,而对于较大范围,则存在一个随机的点状扩散模式。我们表明,前者可以通过一个确定性系统来很好地描述,该系统中,线性增长项在低于某个临界密度时被截断。这个确定性系统不仅给出了正确的前沿速度,而且还预测了当相互作用核导致稳定的均匀状态时,如高斯核,对于足够大的截断值,会出现聚类。在临界截断值以上,在前沿后面会出现明显的簇。在足够小的承载能力的随机模型中也存在这些相同的特征。在后一种,即点状扩散模式中,种群集中在簇上,就像在无限范围的情况下一样,由于随机噪声的作用,簇会分裂和分离。由于相互作用范围有限,如果种群边缘的一个片段分离得足够远,它就会作为一个新的簇稳定下来,并且这个过程会重新开始。对于大的相互作用范围,确定性截断模型没有这种扩散,这证明了它的纯粹随机性起源。我们表明,这种扩散模式具有一个指数小的平均扩散速度,随着相互作用核的范围而衰减。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验