Suppr超能文献

基于深循环锂金属负极的高容量可充电电池。

High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes.

机构信息

Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT 06516.

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 201620 Shanghai, People's Republic of China.

出版信息

Proc Natl Acad Sci U S A. 2018 May 29;115(22):5676-5680. doi: 10.1073/pnas.1803634115. Epub 2018 May 14.

Abstract

Discovering new chemistry and materials to enable rechargeable batteries with higher capacity and energy density is of paramount importance. While Li metal is the ultimate choice of a battery anode, its low efficiency is still yet to be overcome. Many strategies have been developed to improve the reversibility and cycle life of Li metal electrodes. However, almost all of the results are limited to shallow cycling conditions (e.g., 1 mAh cm) and thus inefficient utilization (<1%). Here we achieve Li metal electrodes that can be deeply cycled at high capacities of 10 and 20 mAh cm with average Coulombic efficiency >98% in a commercial LiPF/carbonate electrolyte. The high performance is enabled by slow release of LiNO into the electrolyte and its subsequent decomposition to form a LiN and lithium oxynitrides (LiN O)-containing protective layer which renders reversible, dendrite-free, and highly dense Li metal deposition. Using the developed Li metal electrodes, we construct a Li-MoS full cell with the anode and cathode materials in a close-to-stoichiometric amount ratio. In terms of both capacity and energy, normalized to either the electrode area or the total mass of the electrode materials, our cell significantly outperforms other laboratory-scale battery cells as well as the state-of-the-art Li ion batteries on the market.

摘要

发现新的化学物质和材料,以实现具有更高容量和能量密度的可充电电池,这一点至关重要。尽管金属锂是电池阳极的最佳选择,但它的低效率仍有待克服。人们已经开发出许多策略来提高金属锂电极的可逆性和循环寿命。然而,几乎所有的结果都仅限于浅循环条件(例如,1 mAh cm),因此利用率不高(<1%)。在这里,我们实现了金属锂电极,在商用 LiPF/碳酸盐电解质中,在 10 和 20 mAh cm 的高容量下可以进行深度循环,平均库仑效率>98%。高性能是通过将 LiNO 缓慢释放到电解质中并随后分解形成含有 LiN 和锂氧氮化物(LiN O)的保护性层来实现的,该层使可逆、无枝晶且高度致密的金属锂沉积成为可能。使用开发的金属锂电极,我们构建了一个 Li-MoS 全电池,其阳极和阴极材料的比例接近化学计量比。就容量和能量而言,相对于电极面积或电极材料的总质量,我们的电池明显优于其他实验室规模的电池以及市场上的先进锂离子电池。

相似文献

1
High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes.基于深循环锂金属负极的高容量可充电电池。
Proc Natl Acad Sci U S A. 2018 May 29;115(22):5676-5680. doi: 10.1073/pnas.1803634115. Epub 2018 May 14.
3
The Li-ion rechargeable battery: a perspective.锂离子可充电电池:一个展望。
J Am Chem Soc. 2013 Jan 30;135(4):1167-76. doi: 10.1021/ja3091438. Epub 2013 Jan 18.

引用本文的文献

6
MOFs Containing Solid-State Electrolytes for Batteries.含固态电解质的金属-有机框架电池。
Adv Sci (Weinh). 2023 Apr;10(10):e2206887. doi: 10.1002/advs.202206887. Epub 2023 Jan 22.

本文引用的文献

3
Nanodiamonds suppress the growth of lithium dendrites.纳米金刚石抑制锂枝晶的生长。
Nat Commun. 2017 Aug 25;8(1):336. doi: 10.1038/s41467-017-00519-2.
5
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.迈向可充电电池中安全的锂金属阳极:综述。
Chem Rev. 2017 Aug 9;117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115. Epub 2017 Jul 28.
10
High-capacity, low-tortuosity, and channel-guided lithium metal anode.高容量、低曲折度且具有通道导向的锂金属负极。
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3584-3589. doi: 10.1073/pnas.1618871114. Epub 2017 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验