Jaeger Carsten, Lisec Jan
Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany.
Berlin Institute of Health (BIH), Berlin, Germany.
Methods Mol Biol. 2018;1778:285-296. doi: 10.1007/978-1-4939-7819-9_20.
Raw data from metabolomics experiments are initially subjected to peak identification and signal deconvolution to generate raw data matrices m × n, where m are samples and n are metabolites. We describe here simple statistical procedures on such multivariate data matrices, all provided as functions in the programming environment R, useful to normalize data, detect biomarkers, and perform sample classification.
代谢组学实验的原始数据最初要经过峰识别和信号去卷积处理,以生成m×n的原始数据矩阵,其中m是样本,n是代谢物。我们在此描述针对此类多变量数据矩阵的简单统计程序,所有这些程序都作为编程环境R中的函数提供,有助于数据归一化、生物标志物检测和样本分类。