Ralph N. Adams Institute for Bioanalytical Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States.
Anal Chem. 2018 Jun 5;90(11):6789-6795. doi: 10.1021/acs.analchem.8b00771. Epub 2018 May 24.
Wavelength-modulated back scatter interferometry (M-BSI) is shown to improve the detection metrics for refractive index (RI) sensing in microseparations. In M-BSI, the output of a tunable diode laser is focused into the detection zone of a separation channel as the excitation wavelength is rapidly modulated. This spatially modulates the observed interference pattern, which is measured in the backscattered direction. Phase-sensitive detection using a split photodiode detector aligned on one fringe of the interference pattern is used to monitor RI changes as analytes are separated. Using sucrose standards, we report a detection limit of 700 μg/L in a 75 μm i.d. capillary at the 3σ level, corresponding to a detection volume of 90 pL. To validate the approach for electrophoretic separations, Na and Li were separated and detected with M-BSI and indirect-UV absorbance on the same capillary. A 4 mg/L NaCl and LiCl mixture leads to comparable separation efficiencies in the two detection schemes, with better signal-to-noise in the M-BSI detection, but less baseline stability. The latter arises in part from Joule heating, which influences RI measurements through the thermo-optic properties of the run buffer. To reduce this effect, a 25 μm i.d. capillary combined with active temperature control was used to detect the separation of sucrose, glucose, and lactose with M-BSI. The lack of suitable UV chromophores makes these analytes challenging to detect directly in ultrasmall volumes. Using a 55 mM NaOH run buffer, M-BSI is shown to detect the separation of a mixture of 174 mg/L sucrose, 97 mg/L glucose, and 172 mg/L lactose in a 15 pL detection volume. The universal on-column detection in ultrasmall volumes adds new capabilities for microanalysis platforms, while potentially reducing the footprint and costs of these systems.
波长调制背散射干涉测量(M-BSI)被证明可以提高微分离中折射率(RI)传感的检测指标。在 M-BSI 中,当激发波长快速调制时,可调谐二极管激光器的输出被聚焦到分离通道的检测区域中。这会在背散射方向上对观察到的干涉图案进行空间调制,然后对其进行测量。使用沿干涉图案的一个条纹对准的分束光电二极管探测器进行相敏检测,以监测分析物分离时 RI 的变化。使用蔗糖标准品,我们报告了在 75 µm 内径的毛细管中在 3σ 水平下的 700 μg/L 的检测限,对应于 90 pL 的检测体积。为了验证该方法在电泳分离中的应用,我们使用 M-BSI 和间接紫外吸收在同一毛细管上对 Na 和 Li 进行了分离和检测。4 mg/L 的 NaCl 和 LiCl 混合物在两种检测方案中产生了相当的分离效率,M-BSI 检测的信噪比更好,但基线稳定性更差。后者部分源于焦耳加热,它通过运行缓冲液的热光性质影响 RI 测量。为了减少这种影响,我们使用内径为 25 µm 的毛细管并结合主动温度控制,使用 M-BSI 检测蔗糖、葡萄糖和乳糖的分离。由于缺乏合适的紫外发色团,这些分析物在超小体积中直接检测具有挑战性。使用 55 mM NaOH 运行缓冲液,M-BSI 被证明可以检测到 174 mg/L 蔗糖、97 mg/L 葡萄糖和 172 mg/L 乳糖混合物在 15 pL 检测体积中的分离。在超小体积中通用的柱上检测为微分析平台增添了新的功能,同时可能降低这些系统的占地面积和成本。