Department of Chemistry and ‡Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221-0172 , United States.
ACS Sens. 2018 Jun 22;3(6):1203-1209. doi: 10.1021/acssensors.8b00278. Epub 2018 May 24.
In this manuscript, we employ the technique intermittent pulse amperometry (IPA) to interrogate equilibrium and kinetic target binding to the surface of electrochemical, aptamer-based (E-AB) sensors, achieving as fast as 2 ms time resolution. E-AB sensors comprise an electrode surface modified with a flexible nucleic acid aptamer tethered at the 3'-terminus with a redox-active molecule. The introduction of a target changes the conformation and flexibility of the nucleic acid, which alters the charge transfer rate of the appended redox molecule. Typically, changes in charge transfer rate within this class of sensor are monitored via voltammetric methods. Here, we demonstrate that the use of IPA enables the detection of changes in charge transfer rates (i.e., current) at times <100 μs after the application of a potential pulse. Changes in sensor current are quantitatively related to target analyte concentration and can be used to create binding isotherms. Furthermore, the application of IPA enables rapid probing of the electrochemical surface with a time resolution equivalent to as low as twice the applied potential pulse width, not previously demonstrated with traditional voltammetric techniques employed with E-AB sensors (alternating current, square wave, cyclic). To visualize binding, we developed false-color plots analogous to those used in the field of fast-scan cyclic voltammetry. The use of IPA is universal, as demonstrated with two representative small molecule E-AB sensors directed against the aminoglycoside antibiotic tobramycin and adenosine triphosphate (ATP). Intermittent pulse amperometry exhibits an unprecedented sub-microsecond temporal response and is a general method for measuring rapid sensor performance.
在本手稿中,我们采用间歇脉冲安培法(IPA)来检测平衡和动力学目标与电化学、适配体为基础的(E-AB)传感器表面的结合,实现了最快 2ms 的时间分辨率。E-AB 传感器由电极表面修饰而成,其 3' 末端带有柔性核酸适配体,并且连接有一个氧化还原活性分子。目标物的引入会改变核酸的构象和灵活性,从而改变附加的氧化还原分子的电荷转移速率。通常,这类传感器中电荷转移速率的变化是通过伏安法进行监测的。在这里,我们证明了 IPA 的使用可以在施加电位脉冲后 <100μs 的时间内检测到电荷转移速率(即电流)的变化。传感器电流的变化与目标分析物浓度定量相关,可用于创建结合等温线。此外,IPA 的应用可以以与施加的电位脉冲宽度一样低的时间分辨率(低至两倍)快速探测电化学表面,这是以前使用 E-AB 传感器的传统伏安技术(交流、方波、循环伏安)所无法实现的。为了可视化结合,我们开发了类似于快速扫描循环伏安法领域中使用的假彩色图。IPA 的使用具有普遍性,我们用两个针对氨基糖苷抗生素妥布霉素和三磷酸腺苷(ATP)的小分子 E-AB 传感器进行了演示。间歇脉冲安培法具有前所未有的亚微秒时间响应,是一种测量快速传感器性能的通用方法。