Abeykoon Sanduni W, White Ryan J
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
Department of Electrical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States.
ACS Meas Sci Au. 2022 Oct 5;3(1):1-9. doi: 10.1021/acsmeasuresciau.2c00044. eCollection 2023 Feb 15.
Square wave voltammetry (SWV) is a voltammetric technique for measuring Faradaic current while minimizing contributions from non-Faradaic processes. In square wave voltammetry, the potential waveform applied to a working electrode and the current sampling protocols followed are designed to minimize contributions from non-Faradaic processes (i.e., double layer charging) to improve voltammetric sensitivity. To achieve this, the current is measured at the end of each forward and reverse potential pulse after allowing time for non-Faradaic currents to decay exponentially. A consequence of sampling current at the end of a potential pulse is that the current data from the preceding time of the potential pulse are discarded. These discarded data can provide information about the non-Faradaic contributions as well as information about the redox system including charge transfer rates. In this paper, we introduce continuous square wave voltammetry (cSWV), which utilizes the continuous collection of current to maximize the information content obtainable from a single voltammetry sweep eliminating the need for multiple scans. cSWV enables acquiring a multitude of voltammograms corresponding to various frequencies and, thus, different scan rates from a single sweep. An application that benefits significantly from cSWV is conformation switching, functional nucleic acid sensors. We demonstrate the utility of cSWV on two representative small molecules targeting electrochemical, aptamer-based sensors. Moreover, we show that cSWV provides comparable results to those obtained from traditional square wave voltammetry, but with cSWV, we are able to acquire dynamic information about the sensor surfaces enabling rapid calibration and optimization of sensing performance. We also demonstrate cSWV on soluble redox markers. cSWV can potentially become a mainstay technique in the field of conformation switching sensors.
方波伏安法(SWV)是一种伏安技术,用于测量法拉第电流,同时尽量减少非法拉第过程的贡献。在方波伏安法中,施加到工作电极的电位波形和遵循的电流采样协议旨在尽量减少非法拉第过程(即双层充电)的贡献,以提高伏安灵敏度。为了实现这一点,在允许非法拉第电流呈指数衰减的时间后,在每个正向和反向电位脉冲结束时测量电流。在电位脉冲结束时采样电流的一个结果是,来自电位脉冲前一时刻的电流数据被丢弃。这些被丢弃的数据可以提供有关非法拉第贡献的信息以及有关包括电荷转移速率在内的氧化还原系统的信息。在本文中,我们介绍了连续方波伏安法(cSWV),它利用连续采集电流来最大化从单次伏安扫描中可获得的信息量,从而无需进行多次扫描。cSWV能够从单次扫描中获取对应于各种频率以及不同扫描速率的大量伏安图。cSWV显著受益的一个应用是构象转换功能性核酸传感器。我们展示了cSWV在两种针对基于适体的电化学传感器的代表性小分子上的实用性。此外,我们表明cSWV提供的结果与传统方波伏安法获得的结果相当,但使用cSWV,我们能够获取有关传感器表面的动态信息,从而实现传感性能的快速校准和优化。我们还展示了cSWV在可溶性氧化还原标记物上的应用。cSWV有可能成为构象转换传感器领域的一项主要技术。