Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
Anal Chem. 2010 Sep 1;82(17):7090-5. doi: 10.1021/ac101491d.
Biosensors built using ribonucleic acid (RNA) aptamers show promise as tools for point-of-care medical diagnostics, but they remain vulnerable to nuclease degradation when deployed in clinical samples. To explore methods for protecting RNA-based biosensors from such degradation we have constructed and characterized an electrochemical, aptamer-based sensor for the detection of aminoglycosidic antibiotics. We find that while this sensor achieves low micromolar detection limits and subminute equilibration times when challenged in buffer, it deteriorates rapidly when immersed directly in blood serum. In order to circumvent this problem, we have developed and tested sensors employing modified versions of the same aptamer. Our first effort to this end entailed the methylation of all of the 2'-hydroxyl groups outside of the aptamer's antibiotic binding pocket. However, while devices employing this modified aptamer are as sensitive as those employing an unmodified parent, the modification fails to confer greater stability when the sensor is challenged directly in blood serum. As a second potentially naive alternative, we replaced the RNA bases in the aptamer with their more degradation-resistant deoxyribonucleic acid (DNA) equivalents. Surprisingly and unlike control DNA-stem loops employing other sequences, this DNA aptamer retains the ability to bind aminoglycosides, albeit with poorer affinity than the parent RNA aptamer. Unfortunately, however, while sensors fabricated using this DNA aptamer are stable in blood serum, its lower affinity pushes their detection limits above the therapeutically relevant range. Finally, we find that ultrafiltration through a low-molecular-weight-cutoff spin column rapidly and efficiently removes the relevant nucleases from serum samples spiked with gentamicin, allowing the convenient detection of this aminoglycoside at clinically relevant concentrations using the original RNA-based sensor.
基于核糖核酸 (RNA) 适体的生物传感器有望成为即时医疗诊断的工具,但在临床样本中使用时,它们仍然容易受到核酸酶的降解。为了探索保护基于 RNA 的生物传感器免受这种降解的方法,我们构建并表征了一种基于适体的电化学传感器,用于检测氨基糖苷类抗生素。我们发现,虽然该传感器在缓冲液中受到挑战时达到了低微摩尔的检测限和亚分钟的平衡时间,但直接浸入血清中时会迅速恶化。为了解决这个问题,我们开发并测试了采用相同适体的修饰版本的传感器。我们为此做出的第一项努力是使适体抗生素结合口袋外的所有 2'-羟基全部甲基化。然而,尽管采用这种修饰适体的设备与采用未修饰的亲本的设备一样敏感,但当传感器直接在血清中受到挑战时,修饰并不能赋予更大的稳定性。作为第二个潜在的简单替代方案,我们用更具降解抗性的脱氧核糖核酸 (DNA) 取代了适体中的 RNA 碱基。令人惊讶的是,与采用其他序列的 DNA 茎环作为对照不同,这种 DNA 适体保留了结合氨基糖苷的能力,尽管与亲本 RNA 适体的亲和力较差。然而,不幸的是,尽管使用这种 DNA 适体制备的传感器在血清中稳定,但它的低亲和力将其检测限推高到治疗相关范围内。最后,我们发现,通过低分子量截止值的超滤柱快速有效地从加有庆大霉素的血清样品中去除相关的核酸酶,允许使用原始基于 RNA 的传感器方便地检测到这种氨基糖苷类抗生素在临床相关浓度下的存在。