Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences , University of Portsmouth , White Swan Road , Portsmouth PO1 2DT , U.K.
Departament of Pharmaceutics and Food Technology and Instituto Universitario de Farmacia Industrial (IUFI) , School of Pharmacy, University Complutense , Avenida Complutense , 28040 Madrid , Spain.
Mol Pharm. 2018 Jul 2;15(7):2570-2583. doi: 10.1021/acs.molpharmaceut.8b00097. Epub 2018 May 24.
Nanoenabled lipid-based drug delivery systems offer a platform to overcome challenges encountered with current failed leads in the treatment of parasitic and infectious diseases. When prepared with FDA or EMA approved excipients, they can be readily translated without the need for further toxicological studies, while they remain affordable and amenable to scale-up. Buparvaquone (BPQ), a hydroxynapthoquinone with in vitro activity in the nanomolar range, failed to clinically translate as a viable treatment for visceral leishmaniasis due to its poor oral bioavailability limited by its poor aqueous solubility (BCS Class II drug). Here we describe a self-nanoemulsifying system (SNEDDS) with high loading and thermal stability up to 6 months in tropical conditions and the ability to enhance the solubilization capacity of BPQ in gastrointestinal media as demonstrated by flow-through cell and dynamic in vitro lipolysis studies. BPQ SNEDDS demonstrated an enhanced oral bioavailability compared to aqueous BPQ dispersions (probe-sonicated), resulting in an increased plasma AUC by 55% that is 4-fold higher than any previous reported values for BPQ formulations. BPQ SNEDDS can be adsorbed on low molecular glycol chitosan polymers forming solid dispersions that when compressed into tablets allow the complete dissolution of BPQ in gastrointestinal media. BPQ SNEDDS and BPQ solid SNEDDS demonstrated potent in vitro efficacy in the nanomolar range (<37 nM) and were able to near completely inhibit parasite replication in the spleen while also demonstrating 48 ± 48 and 56 ± 23% inhibition of the parasite replication in the liver, respectively, compared to oral miltefosine after daily administration over 10 days. The proposed platform technology can be used to elicit a range of cost-effective and orally bioavailable noninvasive formulations for a range of antiparasitic and infectious disease drugs that are needed for closing the global health innovation gap.
基于脂质的纳米给药系统为克服当前寄生虫和传染病治疗中失败先导化合物所面临的挑战提供了一个平台。当用 FDA 或 EMA 批准的赋形剂制备时,它们可以直接转化,而无需进一步的毒理学研究,同时保持负担得起且易于扩大规模。丁萘醌(BPQ)是一种具有纳米摩尔范围内体外活性的羟基萘醌,由于其较差的口服生物利用度(BCS 类 II 药物)受到其较差的水溶性限制,未能作为一种可行的内脏利什曼病治疗方法在临床上转化。在这里,我们描述了一种自微乳系统(SNEDDS),具有高载药量和热稳定性,在热带条件下可长达 6 个月,并且能够增强 BPQ 在胃肠道介质中的增溶能力,如通过流动细胞和动态体外脂肪分解研究所示。与水性 BPQ 分散体(探针超声处理)相比,BPQ SNEDDS 表现出增强的口服生物利用度,导致血浆 AUC 增加 55%,是 BPQ 制剂以前任何报告值的 4 倍。BPQ SNEDDS 可以吸附在低分子量的乙二醇壳聚糖聚合物上形成固体分散体,当压缩成片剂时,可以使 BPQ 在胃肠道介质中完全溶解。BPQ SNEDDS 和 BPQ 固体 SNEDDS 在纳摩尔范围内(<37 nM)表现出强大的体外疗效,并能够在脾脏中近乎完全抑制寄生虫复制,同时还分别在肝脏中显示出 48±48%和 56±23%的寄生虫复制抑制作用,与每天口服米替福新 10 天后相比。所提出的平台技术可用于引发一系列具有成本效益和口服生物利用度的非侵入性制剂,用于一系列抗寄生虫和传染病药物,这些药物是缩小全球健康创新差距所必需的。