Suppr超能文献

基于 CT 的肺气肿视觉分类:与 COPDGene 研究中死亡率的关联。

CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study.

机构信息

From the Department of Radiology (D.A.L., D.N., T.J., S.M.H.), Division of Biostatistics (C.M.M., C.W., D.C.E.), and Department of Medicine (E.A.R., B.J.M., R.P.B., J.D.C.), National Jewish Health, 1400 Jackson St, Denver, CO 80206; Department of Radiology, Columbia University Medical Center, New York, NY (J.H.M.A.); Department of Diagnostic Radiology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Universités, Paris, France (P.A.G.); Department of Diagnostic and Interventional Radiology, University of Heidelberg, Translational Lung Research Center Heidelberg, Heidelberg, Germany (H.U.K.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Mich (M.K.H., J.L.C.); Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md (T.H.B.); Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colo (J.E.H.); Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Mich (J.L.C.); and Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (E.K.S.).

出版信息

Radiology. 2018 Sep;288(3):859-866. doi: 10.1148/radiol.2018172294. Epub 2018 May 15.

Abstract

Purpose To determine whether visually assessed patterns of emphysema at CT might provide a simple assessment of mortality risk among cigarette smokers. Materials and Methods Of the first 4000 cigarette smokers consecutively enrolled between 2007 and 2011 in this COPDGene study, 3171 had data available for both visual emphysema CT scores and survival. Each CT scan was retrospectively visually scored by two analysts using the Fleischner Society classification system. Severity of emphysema was also evaluated quantitatively by using percentage lung volume occupied by low-attenuation areas (voxels with attenuation of -950 HU or less) (LAA-950). Median duration of follow-up was 7.4 years. Regression analysis for the relationship between imaging patterns and survival was based on the Cox proportional hazards model, with adjustment for age, race, sex, height, weight, pack-years of cigarette smoking, current smoking status, educational level, LAA-950, and (in a second model) forced expiratory volume in 1 second (FEV). Results Observer agreement in visual scoring was good (weighted κ values, 0.71-0.80). There were 519 deaths in the study cohort. Compared with subjects who did not have visible emphysema, mortality was greater in those with any grade of emphysema beyond trace (adjusted hazard ratios, 1.7, 2.5, 5.0, and 4.1, respectively, for mild centrilobular emphysema, moderate centrilobular emphysema, confluent emphysema, and advanced destructive emphysema, P < .001). This increased mortality generally persisted after adjusting for LAA-950. Conclusion The visual presence and severity of emphysema is associated with significantly increased mortality risk, independent of the quantitative severity of emphysema. Online supplemental material is available for this article.

摘要

目的

确定 CT 上目测肺气肿模式是否可以简单评估吸烟人群的死亡风险。

材料与方法

在这项 COPDGene 研究中,连续纳入了 2007 年至 2011 年间的前 4000 名吸烟者,其中 3171 名吸烟者的 CT 视觉肺气肿评分和生存数据均可用。每个 CT 扫描均由两位分析师使用 Fleischner 学会分类系统进行回顾性视觉评分。使用低衰减区(衰减值低于-950 HU 的体素)(LAA-950)占肺容积的百分比(%)来定量评估肺气肿的严重程度。中位随访时间为 7.4 年。基于 Cox 比例风险模型,对成像模式与生存之间的关系进行回归分析,调整因素包括年龄、种族、性别、身高、体重、吸烟包年数、当前吸烟状态、教育程度、LAA-950 以及(在第二个模型中)1 秒用力呼气量(FEV)。

结果

视觉评分的观察者间一致性良好(加权κ值,0.71-0.80)。研究队列中有 519 例死亡。与没有可见肺气肿的患者相比,轻度小叶中心型肺气肿、中度小叶中心型肺气肿、融合型肺气肿和晚期破坏性肺气肿患者的死亡率分别增加了 1.7 倍、2.5 倍、5.0 倍和 4.1 倍(调整后的危险比,分别为 1.7、2.5、5.0 和 4.1,P <.001)。调整 LAA-950 后,这种死亡率的增加仍普遍存在。

结论

肺气肿的视觉存在和严重程度与显著增加的死亡风险相关,独立于肺气肿的定量严重程度。本文提供了在线补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9366/6122195/5f40c0683fb0/radiol.2018172294.fig1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验