Department of Chemistry , University of Minnesota - Twin Cities , Minneapolis , Minnesota 55455 , United States.
J Am Chem Soc. 2018 Jun 13;140(23):7267-7281. doi: 10.1021/jacs.8b03546. Epub 2018 May 31.
A combined computational and experimental study on the mechanism of Ti-catalyzed formal [2 + 2 + 1] pyrrole synthesis from alkynes and aryl diazenes is reported. This reaction proceeds through a formally Ti/Ti redox catalytic cycle as determined by natural bond orbital (NBO) and intrinsic bond orbital (IBO) analysis. Kinetic analysis of the reaction of internal alkynes with azobenzene reveals a complex equilibrium involving Ti═NPh monomer/dimer equilibrium and Ti═NPh + alkyne [2 + 2] cycloaddition equilibrium along with azobenzene and pyridine inhibition equilibria prior to rate-determining second alkyne insertion. Computations support this kinetic analysis, provide insights into the structure of the active species in catalysis and the roles of solvent, and provide a new mechanism for regeneration of the Ti imido catalyst via disproportionation. Reductive elimination from a 6-membered azatitanacyclohexadiene species to generate pyrrole-bound Ti is surprisingly facile and occurs through a unique electrocyclic reductive elimination pathway similar to a Nazarov cyclization. The resulting Ti species are stabilized through backbonding into the π* of the pyrrole framework, although solvent effects also significantly stabilize free Ti species that are required for pyrrole loss and catalytic turnover. Further computational and kinetic analysis reveals that in complex reactions with unysmmetric alkynes the resulting pyrrole regioselectivity is driven primarily by steric effects for terminal alkynes and inductive effects for internal alkynes.
报道了一种通过炔烃和芳基重氮化合物合成 Ti 催化的形式[2+2+1]吡咯的计算与实验综合研究。通过自然键轨道(NBO)和本征键轨道(IBO)分析,确定该反应通过形式上的 Ti/Ti 氧化还原催化循环进行。对内部炔烃与偶氮苯反应的动力学分析表明,存在一个复杂的平衡,包括 Ti═NPh 单体/二聚体平衡和 Ti═NPh + 炔烃[2+2]环加成平衡,以及偶氮苯和吡啶抑制平衡,然后才是速率决定的第二个炔烃插入。计算支持这种动力学分析,提供了关于催化中活性物种结构以及溶剂作用的见解,并提供了一种通过歧化作用再生 Ti 亚胺催化剂的新机制。从 6 元氮杂钛环戊二烯物种中进行还原消除生成与吡咯键合的 Ti 非常容易,并且通过类似于 Nazarov 环化的独特电环化还原消除途径进行。所得 Ti 物种通过反馈键合到吡咯骨架的π*中得到稳定,尽管溶剂效应也显著稳定了需要失去吡咯和催化周转的游离 Ti 物种。进一步的计算和动力学分析表明,在与不对称炔烃的复杂反应中,末端炔烃的主要驱动力是空间位阻效应,而内部炔烃的主要驱动力是诱导效应。