Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Frescati hagväg 9A, 10691 Stockholm, Sweden.
Computational Brain Science Laboratory, Department of Computational Science and Technology, KTH Royal Institute of Technology, Lindstedtsvägen 5, 10044 Stockholm, Sweden.
Cognition. 2018 Sep;178:37-49. doi: 10.1016/j.cognition.2018.05.007. Epub 2018 May 12.
The olfactory sense is a particularly challenging domain for cognitive science investigations of perception, memory, and language. Although many studies show that odors often are difficult to describe verbally, little is known about the associations between olfactory percepts and the words that describe them. Quantitative models of how odor experiences are described in natural language are therefore needed to understand how odors are perceived and communicated. In this study, we develop a computational method to characterize the olfaction-related semantic content of words in a large text corpus of internet sites in English. We introduce two new metrics: olfactory association index (OAI, how strongly a word is associated with olfaction) and olfactory specificity index (OSI, how specific a word is in its description of odors). We validate the OAI and OSI metrics using psychophysical datasets by showing that terms with high OAI have high ratings of perceived olfactory association and are used to describe highly familiar odors. In contrast, terms with high OSI have high inter-individual consistency in how they are applied to odors. Finally, we analyze Dravnieks's (1985) dataset of odor ratings in terms of OAI and OSI. This analysis reveals that terms that are used broadly (applied often but with moderate ratings) tend to be olfaction-unrelated and abstract (e.g., "heavy" or "light"; low OAI and low OSI) while descriptors that are used selectively (applied seldom but with high ratings) tend to be olfaction-related (e.g., "vanilla" or "licorice"; high OAI). Thus, OAI and OSI provide behaviorally meaningful information about olfactory language. These statistical tools are useful for future studies of olfactory perception and cognition, and might help integrate research on odor perception, neuroimaging, and corpus-based linguistic models of semantic organization.
嗅觉是认知科学研究感知、记忆和语言的一个极具挑战性的领域。尽管许多研究表明气味通常很难用言语来描述,但我们对嗅觉感知与描述它们的词语之间的联系知之甚少。因此,需要定量模型来了解嗅觉体验如何用自然语言来描述,从而理解嗅觉是如何被感知和交流的。在这项研究中,我们开发了一种计算方法,用于描述英语互联网网站大型语料库中与嗅觉相关的语义内容。我们引入了两个新的指标:嗅觉关联指数(OAI,一个词与嗅觉的关联强度)和嗅觉特异性指数(OSI,一个词在描述气味时的特异性)。我们通过使用心理物理数据集验证了 OAI 和 OSI 指标的有效性,结果表明 OAI 较高的术语具有较高的感知嗅觉关联度,并且用于描述高度熟悉的气味。相比之下,OSI 较高的术语在其应用于气味时具有较高的个体间一致性。最后,我们根据 OAI 和 OSI 分析了 Dravnieks(1985)的气味评级数据集。这项分析表明,广泛使用的术语(经常使用但评级中等)往往与嗅觉无关且抽象(例如“重”或“轻”;低 OAI 和低 OSI),而选择性使用的描述符(很少使用但评级很高)往往与嗅觉相关(例如“香草”或“甘草”;高 OAI)。因此,OAI 和 OSI 为嗅觉语言提供了具有行为意义的信息。这些统计工具对于未来的嗅觉感知和认知研究很有用,并且可能有助于整合嗅觉感知、神经影像学和基于语料库的语义组织语言模型的研究。