Suppr超能文献

细胞周期蛋白依赖性激酶 1(CDK1)和 CDK2 在调节剪接因子 3B1 与染色质相互作用方面具有相反的作用。

Cyclin-dependent kinase 1 (CDK1) and CDK2 have opposing roles in regulating interactions of splicing factor 3B1 with chromatin.

机构信息

From the Driskill Graduate Program, Northwestern University, Chicago, Illinois 60611.

the Medical College of Wisconsin, Milwaukee, Wisconsin 53226.

出版信息

J Biol Chem. 2018 Jun 29;293(26):10220-10234. doi: 10.1074/jbc.RA118.001654. Epub 2018 May 15.

Abstract

Splicing factor 3B1 (SF3B1) is a core splicing protein that stabilizes the interaction between the U2 snRNA and the branch point in the mRNA target during splicing. SF3B1 is heavily phosphorylated at its N terminus and a substrate of cyclin-dependent kinases (CDKs). Although SF3B1 phosphorylation coincides with splicing catalysis, the functional significance of SF3B1 phosphorylation is largely undefined. Here, we show that SF3B1 phosphorylation follows a dynamic pattern during cell cycle progression that depends on CDK activity. SF3B1 is known to interact with chromatin, and we found that SF3B1 maximally interacts with nucleosomes during G/S and that this interaction requires CDK2 activity. In contrast, SF3B1 disassociates from nucleosomes at G/M, coinciding with a peak in CDK1-mediated SF3B1 phosphorylation. Thus, CDK1 and CDK2 appear to have opposing roles in regulating SF3B1-nucleosome interactions. Importantly, these interactions were modified by the presence and phosphorylation status of linker histone H1, particularly the H1.4 isoform. Performing genome-wide analysis of SF3B1-chromatin binding in synchronized cells, we observed that SF3B1 preferentially bound exons. Differences in SF3B1 chromatin binding to specific sites, however, did not correlate with changes in RNA splicing, suggesting that the SF3B1-nucleosome interaction does not determine cell cycle-dependent changes to mRNA splicing. Our results define a cell cycle stage-specific interaction between SF3B1 and nucleosomes that is mediated by histone H1 and depends on SF3B1 phosphorylation. Importantly, this interaction does not seem to be related to SF3B1's splicing function and, rather, points toward its potential role as a chromatin modifier.

摘要

剪接因子 3B1(SF3B1)是一种核心剪接蛋白,可稳定 U2 snRNA 与 mRNA 靶标分支点之间的相互作用。SF3B1 的 N 端高度磷酸化,是细胞周期蛋白依赖性激酶(CDKs)的底物。虽然 SF3B1 磷酸化与剪接催化一致,但 SF3B1 磷酸化的功能意义在很大程度上尚不清楚。在这里,我们显示 SF3B1 磷酸化在细胞周期进展过程中呈现动态模式,该模式依赖于 CDK 活性。SF3B1 已知与染色质相互作用,我们发现 SF3B1 在 G/S 期间与核小体最大相互作用,并且这种相互作用需要 CDK2 活性。相比之下,SF3B1 在 G/M 时与核小体解离,与 CDK1 介导的 SF3B1 磷酸化峰值相吻合。因此,CDK1 和 CDK2 似乎在调节 SF3B1-核小体相互作用方面具有相反的作用。重要的是,这些相互作用受到连接组蛋白 H1 的存在和磷酸化状态的修饰,特别是 H1.4 同工型。在同步细胞中对 SF3B1-染色质结合进行全基因组分析时,我们观察到 SF3B1 优先结合外显子。然而,SF3B1 对特定位点的染色质结合的差异与 RNA 剪接变化没有相关性,这表明 SF3B1-核小体相互作用并不能决定细胞周期依赖性 mRNA 剪接变化。我们的结果定义了 SF3B1 与核小体之间的细胞周期阶段特异性相互作用,该作用由组蛋白 H1 介导,并依赖于 SF3B1 磷酸化。重要的是,这种相互作用似乎与 SF3B1 的剪接功能无关,而是指向其作为染色质修饰剂的潜在作用。

相似文献

1
Cyclin-dependent kinase 1 (CDK1) and CDK2 have opposing roles in regulating interactions of splicing factor 3B1 with chromatin.
J Biol Chem. 2018 Jun 29;293(26):10220-10234. doi: 10.1074/jbc.RA118.001654. Epub 2018 May 15.
2
SF3B1 association with chromatin determines splicing outcomes.
Cell Rep. 2015 Apr 28;11(4):618-29. doi: 10.1016/j.celrep.2015.03.048. Epub 2015 Apr 16.
6
Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation.
Epigenetics Chromatin. 2017 May 22;10:29. doi: 10.1186/s13072-017-0135-3. eCollection 2017.
7
Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages.
RNA. 2016 Mar;22(3):350-9. doi: 10.1261/rna.053108.115. Epub 2016 Jan 7.
8
Mitotic phosphorylation of MPP8 by cyclin-dependent kinases regulates chromatin dissociation.
Biochem Biophys Res Commun. 2013 Mar 22;432(4):654-9. doi: 10.1016/j.bbrc.2013.02.027. Epub 2013 Feb 14.

引用本文的文献

2
The emerging significance of splicing in vertebrate development.
Development. 2022 Oct 1;149(19). doi: 10.1242/dev.200373. Epub 2022 Sep 30.
3
CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1.
Nature. 2022 Sep;609(7928):829-834. doi: 10.1038/s41586-022-05204-z. Epub 2022 Sep 14.
4
Impact of Alternative Splicing Variants on Liver Cancer Biology.
Cancers (Basel). 2021 Dec 21;14(1):18. doi: 10.3390/cancers14010018.
6
Cyclin E in normal physiology and disease states.
Trends Cell Biol. 2021 Sep;31(9):732-746. doi: 10.1016/j.tcb.2021.05.001. Epub 2021 May 27.
7
A Functional Kinase Is Necessary for Cyclin-Dependent Kinase G1 (CDKG1) to Maintain Fertility at High Ambient Temperature in .
Front Plant Sci. 2020 Nov 10;11:586870. doi: 10.3389/fpls.2020.586870. eCollection 2020.
8
LnCompare: gene set feature analysis for human long non-coding RNAs.
Nucleic Acids Res. 2019 Jul 2;47(W1):W523-W529. doi: 10.1093/nar/gkz410.
9
Blood Relatives: Splicing Mechanisms underlying Erythropoiesis in Health and Disease.
F1000Res. 2018 Aug 30;7. doi: 10.12688/f1000research.15442.1. eCollection 2018.

本文引用的文献

1
Splicing and transcription touch base: co-transcriptional spliceosome assembly and function.
Nat Rev Mol Cell Biol. 2017 Oct;18(10):637-650. doi: 10.1038/nrm.2017.63. Epub 2017 Aug 9.
2
Architecture of the human interactome defines protein communities and disease networks.
Nature. 2017 May 25;545(7655):505-509. doi: 10.1038/nature22366. Epub 2017 May 17.
3
Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a.
Nat Cell Biol. 2016 Nov;18(11):1127-1138. doi: 10.1038/ncb3424. Epub 2016 Oct 17.
4
Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations.
Mol Cell. 2016 Oct 20;64(2):307-319. doi: 10.1016/j.molcel.2016.08.036. Epub 2016 Oct 6.
7
Cancer-associated SF3B1 mutants recognize otherwise inaccessible cryptic 3' splice sites within RNA secondary structures.
Oncogene. 2017 Feb 23;36(8):1123-1133. doi: 10.1038/onc.2016.279. Epub 2016 Aug 15.
8
deepTools2: a next generation web server for deep-sequencing data analysis.
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5. doi: 10.1093/nar/gkw257. Epub 2016 Apr 13.
9
RNA metabolism: Co-transcriptional splicing at nucleotide resolution.
Nat Rev Mol Cell Biol. 2016 May;17(5):264-5. doi: 10.1038/nrm.2016.44. Epub 2016 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验