Herzel Lydia, Ottoz Diana S M, Alpert Tara, Neugebauer Karla M
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nat Rev Mol Cell Biol. 2017 Oct;18(10):637-650. doi: 10.1038/nrm.2017.63. Epub 2017 Aug 9.
Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.
几种大分子机器协同作用以产生真核生物信使RNA。RNA聚合酶II(Pol II)沿着长达数百万碱基对的基因进行易位,并生成DNA模板的灵活RNA拷贝。这种新生RNA含有内含子,这些内含子由剪接体去除,剪接体是一种兆道尔顿核糖核蛋白复合体,可将内含子的远端定位到其催化中心。越来越多的证据表明,在体内催化剪接体与Pol II在物理上接近,这意味着转录和剪接发生在相似的时间尺度上,并且转录和剪接机器可能在空间上受到限制。在本综述中,我们讨论了剪接体组装、转录延伸和其他共转录事件的各个方面,这些方面允许共转录剪接进行时间协调。