文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖纳米粒给药可提高鼻内接种流感灭活疫苗黏膜免疫和保护效果。

Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs.

机构信息

Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.

Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States.

出版信息

Front Immunol. 2018 May 2;9:934. doi: 10.3389/fimmu.2018.00934. eCollection 2018.


DOI:10.3389/fimmu.2018.00934
PMID:29770135
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5940749/
Abstract

Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs. In this study, we evaluated the immune responses and cross-protective efficacy of IN chitosan encapsulated inactivated SwIAV vaccine in pigs. Killed SwIAV H1N2 (δ-lineage) antigens (KAg) were encapsulated in chitosan polymer-based nanoparticles (CNPs-KAg). The candidate vaccine was administered twice IN as mist to nursery pigs. Vaccinates and controls were then challenged with a zoonotic and virulent heterologous SwIAV H1N1 (γ-lineage). Pigs vaccinated with CNPs-KAg exhibited an enhanced IgG serum antibody and mucosal secretory IgA antibody responses in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reactive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) influenza A virus strains. Prior to challenge, an increased frequency of cytotoxic T lymphocytes, antigen-specific lymphocyte proliferation, and recall IFN-γ secretion by restimulated peripheral blood mononuclear cells in CNPs-KAg compared to control KAg vaccinates were observed. In CNPs-KAg vaccinated pigs challenged with heterologous virus reduced severity of macroscopic and microscopic influenza-associated pulmonary lesions were observed. Importantly, the infectious SwIAV titers in nasal swabs [days post-challenge (DPC) 4] and BAL fluid (DPC 6) were significantly ( < 0.05) reduced in CNPs-KAg vaccinates but not in KAg vaccinates when compared to the unvaccinated challenge controls. As well, an increased frequency of T helper memory cells and increased levels of recall IFNγ secretion by tracheobronchial lymph nodes cells were observed. In summary, chitosan SwIAV nanovaccine delivered by IN route elicited strong cross-reactive mucosal IgA and cellular immune responses in the respiratory tract that resulted in a reduced nasal viral shedding and lung virus titers in pigs. Thus, chitosan-based influenza nanovaccine may be an ideal candidate vaccine for use in pigs, and pig is a useful animal model for preclinical testing of particulate IN human influenza vaccines.

摘要

每年,猪流感 A 病毒(SwIAV)都会给养猪业造成严重的经济损失。目前通过肌肉注射使用的灭活 SwIAV 疫苗提供同源保护,但对不断进化的田间病毒提供的异源保护有限,这归因于呼吸道中诱导的黏膜 IgA 和细胞免疫应答水平不足。一种使用粘膜粘附性壳聚糖纳米粒子(CNPs)通过鼻腔(IN)途径给药的新型疫苗输送平台有可能在猪中引发强烈的粘膜和全身免疫应答。在这项研究中,我们评估了 IN 壳聚糖包封的灭活 SwIAV 疫苗在猪中的免疫应答和交叉保护效力。用壳聚糖聚合物为基础的纳米粒子(CNPs-KAg)包封了杀死的 SwIAV H1N2(δ谱系)抗原(KAg)。候选疫苗两次以雾剂形式通过 IN 途径施用于仔猪。然后,给接种疫苗和对照组猪用一种人畜共患的、具有毒力的异源 SwIAV H1N1(γ谱系)进行攻毒。用 CNPs-KAg 接种的猪在鼻腔拭子、支气管肺泡灌洗液(BAL)和肺裂解物中表现出增强的 IgG 血清抗体和粘膜分泌型 IgA 抗体反应,这些反应针对同源(H1N2)、异源(H1N1)和异亚型(H3N2)流感 A 病毒株。在攻毒之前,与对照组 KAg 疫苗相比,在 CNPs-KAg 疫苗接种的猪的外周血单核细胞中观察到细胞毒性 T 淋巴细胞、抗原特异性淋巴细胞增殖和再刺激时 IFN-γ分泌的频率增加。在 CNPs-KAg 接种的猪中,与异源病毒攻毒相比,鼻拭子[攻毒后第 4 天(DPC)]和 BAL 液(DPC 6)中的传染性 SwIAV 滴度显著(<0.05)降低,但在未接种疫苗的对照组中未降低。此外,还观察到气管支气管淋巴结细胞中 T 辅助记忆细胞的频率增加和 IFNγ的水平增加。总之,通过 IN 途径递送的壳聚糖 SwIAV 纳米疫苗在呼吸道中引发了强烈的交叉反应性粘膜 IgA 和细胞免疫应答,导致猪的鼻病毒脱落减少和肺部病毒滴度降低。因此,壳聚糖基流感纳米疫苗可能是一种理想的候选疫苗,可用于猪,并且猪是用于测试 IN 人类流感疫苗的临床前颗粒的有用动物模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/ea4644b332d8/fimmu-09-00934-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/d6848efc70f3/fimmu-09-00934-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/1a164ddbd018/fimmu-09-00934-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/6174256ab123/fimmu-09-00934-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/118a8fbd804b/fimmu-09-00934-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/7a38cd35039b/fimmu-09-00934-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/eb1c044b51da/fimmu-09-00934-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/eed4758ab760/fimmu-09-00934-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/20d52ce7b3bb/fimmu-09-00934-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/903bbf5f8617/fimmu-09-00934-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/ea4644b332d8/fimmu-09-00934-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/d6848efc70f3/fimmu-09-00934-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/1a164ddbd018/fimmu-09-00934-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/6174256ab123/fimmu-09-00934-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/118a8fbd804b/fimmu-09-00934-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/7a38cd35039b/fimmu-09-00934-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/eb1c044b51da/fimmu-09-00934-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/eed4758ab760/fimmu-09-00934-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/20d52ce7b3bb/fimmu-09-00934-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/903bbf5f8617/fimmu-09-00934-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9d5/5940749/ea4644b332d8/fimmu-09-00934-g010.jpg

相似文献

[1]
Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs.

Front Immunol. 2018-5-2

[2]
Immunity and Protective Efficacy of Mannose Conjugated Chitosan-Based Influenza Nanovaccine in Maternal Antibody Positive Pigs.

Front Immunol. 2021

[3]
Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs.

Front Immunol. 2020

[4]
Polyanhydride nanovaccine against swine influenza virus in pigs.

Vaccine. 2017-2-22

[5]
Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

J Control Release. 2017-1-2

[6]
Evaluation of CpG-ODN-adjuvanted polyanhydride-based intranasal influenza nanovaccine in pigs.

Vet Microbiol. 2019-8-28

[7]
Poly(I:C) augments inactivated influenza virus-chitosan nanovaccine induced cell mediated immune response in pigs vaccinated intranasally.

Vet Microbiol. 2020-2-13

[8]
A split influenza vaccine formulated with a combination adjuvant composed of alpha-D-glucan nanoparticles and a STING agonist elicits cross-protective immunity in pigs.

J Nanobiotechnology. 2022-11-11

[9]
Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

Vaccine. 2015-1-15

[10]
Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs.

Int J Nanomedicine. 2018-10-24

引用本文的文献

[1]
Influenza-specific antibody-mediated and complement-dependent cellular cytotoxicity-inducing antibodies in vaccinated and infected pigs.

Front Immunol. 2025-6-30

[2]
Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein.

Elife. 2025-5-8

[3]
Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases.

Drug Deliv Transl Res. 2025-4-29

[4]
Chitosan Nanoparticles: Approaches to Preparation, Key Properties, Drug Delivery Systems, and Developments in Therapeutic Efficacy.

AAPS PharmSciTech. 2025-4-17

[5]
Evaluation of mucosal adjuvants to chitosan-nanoparticle-based oral subunit vaccine for controlling salmonellosis in broilers.

Front Immunol. 2025-2-3

[6]
Cyclic di AMP phosphodiesterase nanovaccine elicits protective immunity against Burkholderia cenocepacia infection in mice.

NPJ Vaccines. 2025-2-1

[7]
Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges.

ACS Nano. 2024-9-10

[8]
Human Infant Fecal Microbiota Differentially Influences the Mucosal Immune Pathways Upon Influenza Infection in a Humanized Gnotobiotic Pig Model.

Curr Microbiol. 2024-7-14

[9]
Evaluation of Efficacy of Surface Coated versus Encapsulated Influenza Antigens in Mannose-Chitosan Nanoparticle-Based Intranasal Vaccine in Swine.

Vaccines (Basel). 2024-6-11

[10]
Chitosan Nanoparticles for Intranasal Drug Delivery.

Pharmaceutics. 2024-5-31

本文引用的文献

[1]
Intranasal Nanovaccine Confers Homo- and Hetero-Subtypic Influenza Protection.

Small. 2018-2-12

[2]
Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide.

PLoS One. 2018-1-25

[3]
A New Approach to Antivenom Preparation Using Chitosan Nanoparticles Containing Venom as A Novel Antigen Delivery System.

Iran J Pharm Res. 2017

[4]
The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants.

Clin Exp Vaccine Res. 2017-1

[5]
Polyanhydride nanovaccine against swine influenza virus in pigs.

Vaccine. 2017-2-22

[6]
Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

J Control Release. 2017-1-2

[7]
Influenza A virus vaccines for swine.

Vet Microbiol. 2017-7

[8]
Generation of potent porcine monocyte-derived dendritic cells (MoDCs) by modified culture protocol.

Vet Immunol Immunopathol. 2016-12

[9]
Outbreak of Influenza A(H3N2) Variant Virus Infections Among Persons Attending Agricultural Fairs Housing Infected Swine - Michigan and Ohio, July-August 2016.

MMWR Morb Mortal Wkly Rep. 2016-10-28

[10]
Protein adsorption onto nanoparticles induces conformational changes: Particle size dependency, kinetics, and mechanisms.

Eng Life Sci. 2016-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索