Suppr超能文献

主动目标识别的极端信任域策略优化。

Extreme Trust Region Policy Optimization for Active Object Recognition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2253-2258. doi: 10.1109/TNNLS.2017.2785233.

Abstract

In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.

摘要

在这篇简短的文章中,我们开发了一种深度强化学习方法,通过为主动相机选择一系列动作来主动识别物体,从而帮助区分物体。该方法使用信任区域策略优化来实现,其中策略由极限学习机实现,因此导致高效的优化算法。在公开可用数据集上的实验结果表明了所开发的极限信任区域优化方法的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验