Suppr超能文献

从随机性中发现规律:惊奇的计算模型

Seeing Patterns in Randomness: A Computational Model of Surprise.

机构信息

Department of Computer Science, Maynooth University.

Department of Psychology, Maynooth University.

出版信息

Top Cogn Sci. 2019 Jan;11(1):103-118. doi: 10.1111/tops.12345. Epub 2018 May 17.

Abstract

While seemingly a ubiquitous cognitive process, the precise definition and function of surprise remains elusive. Surprise is often conceptualized as being related to improbability or to contrasts with higher probability expectations. In contrast to this probabilistic view, we argue that surprising observations are those that undermine an existing model, implying an alternative causal origin. Surprises are not merely improbable events; instead, they indicate a breakdown in the model being used to quantify probability. We suggest that the heuristic people rely on to detect such anomalous events is randomness deficiency. Specifically, people experience surprise when they identify patterns where their model implies there should only be random noise. Using algorithmic information theory, we present a novel computational theory which formalizes this notion of surprise as randomness deficiency. We also present empirical evidence that people respond to randomness deficiency in their environment and use it to adjust their beliefs about the causal origins of events. The connection between this pattern-detection view of surprise and the literature on learning and interestingness is discussed.

摘要

虽然惊喜似乎是一种普遍存在的认知过程,但它的确切定义和功能仍然难以捉摸。惊喜通常被认为与不可能性或与更高概率的期望形成对比有关。与这种概率观点相反,我们认为,令人惊讶的观察结果是那些破坏现有模型的结果,意味着存在替代的因果起源。惊喜不仅仅是不可能发生的事件;相反,它们表明用于量化概率的模型出现了故障。我们认为,人们用来检测此类异常事件的启发式方法是随机性不足。具体来说,当人们发现模型暗示只有随机噪声的模式时,他们会感到惊讶。我们使用算法信息论提出了一种新的计算理论,该理论将这种随机性不足的概念形式化为惊喜。我们还提供了实证证据,表明人们对环境中的随机性不足做出反应,并利用它来调整他们对事件因果起源的信念。讨论了这种惊喜的模式检测观点与学习和趣味性文献之间的联系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验