Suppr超能文献

贝叶斯惊奇吸引人类注意力。

Bayesian surprise attracts human attention.

作者信息

Itti Laurent, Baldi Pierre

机构信息

Computer Science Department, University of Southern California, Los Angeles, 90089, USA.

出版信息

Vision Res. 2009 Jun;49(10):1295-306. doi: 10.1016/j.visres.2008.09.007. Epub 2008 Oct 19.

Abstract

We propose a formal Bayesian definition of surprise to capture subjective aspects of sensory information. Surprise measures how data affects an observer, in terms of differences between posterior and prior beliefs about the world. Only data observations which substantially affect the observer's beliefs yield surprise, irrespectively of how rare or informative in Shannon's sense these observations are. We test the framework by quantifying the extent to which humans may orient attention and gaze towards surprising events or items while watching television. To this end, we implement a simple computational model where a low-level, sensory form of surprise is computed by simple simulated early visual neurons. Bayesian surprise is a strong attractor of human attention, with 72% of all gaze shifts directed towards locations more surprising than the average, a figure rising to 84% when focusing the analysis onto regions simultaneously selected by all observers. The proposed theory of surprise is applicable across different spatio-temporal scales, modalities, and levels of abstraction.

摘要

我们提出了一个关于惊奇的形式化贝叶斯定义,以捕捉感官信息的主观方面。惊奇衡量的是数据如何根据关于世界的后验信念与先验信念之间的差异来影响观察者。只有那些能实质性影响观察者信念的数据观测才会产生惊奇,而不管这些观测在香农意义上有多罕见或信息量有多大。我们通过量化人类在看电视时将注意力和目光导向令人惊奇的事件或物品的程度来测试这个框架。为此,我们实现了一个简单的计算模型,其中一种低级的、感官形式的惊奇是由简单模拟的早期视觉神经元计算得出的。贝叶斯惊奇是人类注意力的一个强大吸引源,所有目光转移中有72%指向比平均水平更令人惊奇的位置,当将分析聚焦于所有观察者同时选择的区域时,这一数字上升到84%。所提出的惊奇理论适用于不同的时空尺度、模态和抽象层次。

相似文献

1
Bayesian surprise attracts human attention.贝叶斯惊奇吸引人类注意力。
Vision Res. 2009 Jun;49(10):1295-306. doi: 10.1016/j.visres.2008.09.007. Epub 2008 Oct 19.
3
The surprise-attention link: a review.惊奇与注意力的联系:综述
Ann N Y Acad Sci. 2015 Mar;1339:106-15. doi: 10.1111/nyas.12679. Epub 2015 Feb 13.
6
Eye movements reveal epistemic curiosity in human observers.眼动揭示了人类观察者的认知好奇心。
Vision Res. 2015 Dec;117:81-90. doi: 10.1016/j.visres.2015.10.009. Epub 2015 Nov 12.
9
Space exploration in neglect.太空探索被忽视。
Brain. 1998 Dec;121 ( Pt 12):2357-67. doi: 10.1093/brain/121.12.2357.
10
Surprise attracts the eyes and binds the gaze.惊喜会吸引目光并使人凝视。
Psychon Bull Rev. 2015 Jun;22(3):743-9. doi: 10.3758/s13423-014-0723-1.

引用本文的文献

1
First encounters: Estimating the initial magnitude of attentional capture.首次接触:估计注意力捕获的初始强度。
Vis cogn. 2024 Oct-Dec;32(9-10):822-844. doi: 10.1080/13506285.2024.2315806. Epub 2024 Aug 23.
5
Understanding human visual foraging: a review.理解人类视觉觅食:综述
Biol Cybern. 2025 Jul 23;119(4-6):20. doi: 10.1007/s00422-025-01020-6.
6
From pixels to planning: scale-free active inference.从像素到规划:无标度主动推理
Front Netw Physiol. 2025 Jun 18;5:1521963. doi: 10.3389/fnetp.2025.1521963. eCollection 2025.
8
Semantic surprise predicts the N400 brain potential.语义意外可预测N400脑电成分。
Neuroimage Rep. 2023 Mar 4;3(1):100161. doi: 10.1016/j.ynirp.2023.100161. eCollection 2023 Mar.

本文引用的文献

4
Differences of monkey and human overt attention under natural conditions.自然条件下猴子与人类外显注意力的差异。
Vision Res. 2006 Apr;46(8-9):1194-209. doi: 10.1016/j.visres.2005.08.032. Epub 2005 Dec 20.
6
Modeling the influence of task on attention.模拟任务对注意力的影响。
Vision Res. 2005 Jan;45(2):205-31. doi: 10.1016/j.visres.2004.07.042.
10
Profound contrast adaptation early in the visual pathway.视觉通路早期的深度对比度适应。
Neuron. 2004 Apr 8;42(1):155-62. doi: 10.1016/s0896-6273(04)00178-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验