Itti Laurent, Baldi Pierre
Computer Science Department, University of Southern California, Los Angeles, 90089, USA.
Vision Res. 2009 Jun;49(10):1295-306. doi: 10.1016/j.visres.2008.09.007. Epub 2008 Oct 19.
We propose a formal Bayesian definition of surprise to capture subjective aspects of sensory information. Surprise measures how data affects an observer, in terms of differences between posterior and prior beliefs about the world. Only data observations which substantially affect the observer's beliefs yield surprise, irrespectively of how rare or informative in Shannon's sense these observations are. We test the framework by quantifying the extent to which humans may orient attention and gaze towards surprising events or items while watching television. To this end, we implement a simple computational model where a low-level, sensory form of surprise is computed by simple simulated early visual neurons. Bayesian surprise is a strong attractor of human attention, with 72% of all gaze shifts directed towards locations more surprising than the average, a figure rising to 84% when focusing the analysis onto regions simultaneously selected by all observers. The proposed theory of surprise is applicable across different spatio-temporal scales, modalities, and levels of abstraction.
我们提出了一个关于惊奇的形式化贝叶斯定义,以捕捉感官信息的主观方面。惊奇衡量的是数据如何根据关于世界的后验信念与先验信念之间的差异来影响观察者。只有那些能实质性影响观察者信念的数据观测才会产生惊奇,而不管这些观测在香农意义上有多罕见或信息量有多大。我们通过量化人类在看电视时将注意力和目光导向令人惊奇的事件或物品的程度来测试这个框架。为此,我们实现了一个简单的计算模型,其中一种低级的、感官形式的惊奇是由简单模拟的早期视觉神经元计算得出的。贝叶斯惊奇是人类注意力的一个强大吸引源,所有目光转移中有72%指向比平均水平更令人惊奇的位置,当将分析聚焦于所有观察者同时选择的区域时,这一数字上升到84%。所提出的惊奇理论适用于不同的时空尺度、模态和抽象层次。