Suppr超能文献

感觉皮层的动力学机制:单个刺激调谐吸引子周围的稳定动力学解释了噪声变异性模式。

The Dynamical Regime of Sensory Cortex: Stable Dynamics around a Single Stimulus-Tuned Attractor Account for Patterns of Noise Variability.

机构信息

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.

Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Centre de Neurophysique, Physiologie, et Pathologie, CNRS, 75270 Paris Cedex 06, France; Institute of Neuroscience, Department of Biology and Mathematics, University of Oregon, Eugene, OR 97403, USA.

出版信息

Neuron. 2018 May 16;98(4):846-860.e5. doi: 10.1016/j.neuron.2018.04.017.

Abstract

Correlated variability in cortical activity is ubiquitously quenched following stimulus onset, in a stimulus-dependent manner. These modulations have been attributed to circuit dynamics involving either multiple stable states ("attractors") or chaotic activity. Here we show that a qualitatively different dynamical regime, involving fluctuations about a single, stimulus-driven attractor in a loosely balanced excitatory-inhibitory network (the stochastic "stabilized supralinear network"), best explains these modulations. Given the supralinear input/output functions of cortical neurons, increased stimulus drive strengthens effective network connectivity. This shifts the balance from interactions that amplify variability to suppressive inhibitory feedback, quenching correlated variability around more strongly driven steady states. Comparing to previously published and original data analyses, we show that this mechanism, unlike previous proposals, uniquely accounts for the spatial patterns and fast temporal dynamics of variability suppression. Specifying the cortical operating regime is key to understanding the computations underlying perception.

摘要

皮层活动的相关可变性在刺激开始后普遍受到抑制,这种抑制方式依赖于刺激。这些调制归因于涉及多个稳定状态(“吸引子”)或混沌活动的电路动力学。在这里,我们表明,涉及在兴奋性-抑制性网络中围绕单个刺激驱动吸引子的波动的定性不同的动力学状态(随机“稳定超线性网络”),可以最好地解释这些调制。鉴于皮层神经元的超线性输入/输出函数,增加刺激驱动会增强有效网络连接。这将平衡从放大变异性的相互作用转变为抑制性反馈,从而抑制围绕更强驱动的稳定状态的相关变异性。与之前发表的和原始数据分析相比,我们表明,与以前的提议不同,这种机制独特地解释了变异性抑制的空间模式和快速时间动力学。确定皮层的工作状态对于理解感知背后的计算至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a1/5971207/c71c7bf8b705/gr1.jpg

相似文献

2
Analysis of the stabilized supralinear network.
Neural Comput. 2013 Aug;25(8):1994-2037. doi: 10.1162/NECO_a_00472. Epub 2013 May 10.
3
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
5
Chaos and synchrony in a model of a hypercolumn in visual cortex.
J Comput Neurosci. 1996 Mar;3(1):7-34. doi: 10.1007/BF00158335.
6
Coherent chaos in a recurrent neural network with structured connectivity.
PLoS Comput Biol. 2018 Dec 13;14(12):e1006309. doi: 10.1371/journal.pcbi.1006309. eCollection 2018 Dec.
7
The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics.
PLoS Comput Biol. 2016 Dec 27;12(12):e1005186. doi: 10.1371/journal.pcbi.1005186. eCollection 2016 Dec.
8
Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey.
Cereb Cortex. 1994 May-Jun;4(3):300-13. doi: 10.1093/cercor/4.3.300.
9
Local circuit inhibition in the cerebral cortex as the source of gain control and untuned suppression.
Neural Netw. 2013 Jan;37:172-81. doi: 10.1016/j.neunet.2012.09.005. Epub 2012 Sep 20.
10
Synchronized chaos in local cortical circuits.
Int J Neural Syst. 1996 Sep;7(4):403-15. doi: 10.1142/s0129065796000385.

引用本文的文献

1
Global and local origins of trial-to-trial spike count variability in visual cortex.
bioRxiv. 2025 Aug 12:2025.08.08.669442. doi: 10.1101/2025.08.08.669442.
3
Brain-like variational inference.
ArXiv. 2025 May 16:arXiv:2410.19315v2.
5
The Computational Bottleneck of Basal Ganglia Output (and What to Do About it).
eNeuro. 2025 Apr 24;12(4). doi: 10.1523/ENEURO.0431-23.2024. Print 2025 Apr.
8
A neural geometry approach comprehensively explains apparently conflicting models of visual perceptual learning.
Nat Hum Behav. 2025 May;9(5):1023-1040. doi: 10.1038/s41562-025-02149-x. Epub 2025 Mar 31.
9
Subthreshold variability of neuronal populations driven by synchronous synaptic inputs.
bioRxiv. 2025 Mar 16:2025.03.16.643547. doi: 10.1101/2025.03.16.643547.
10
Circuit-Based Understanding of Fine Spatial Scale Clustering of Orientation Tuning in Mouse Visual Cortex.
bioRxiv. 2025 Feb 13:2025.02.11.637768. doi: 10.1101/2025.02.11.637768.

本文引用的文献

1
Synaptic Mechanisms of Feature Coding in the Visual Cortex of Awake Mice.
Neuron. 2017 Aug 30;95(5):1147-1159.e4. doi: 10.1016/j.neuron.2017.08.014.
2
Attentional modulation of neuronal variability in circuit models of cortex.
Elife. 2017 Jun 7;6:e23978. doi: 10.7554/eLife.23978.
3
Maintenance of persistent activity in a frontal thalamocortical loop.
Nature. 2017 May 11;545(7653):181-186. doi: 10.1038/nature22324. Epub 2017 May 3.
4
Intrinsically-generated fluctuating activity in excitatory-inhibitory networks.
PLoS Comput Biol. 2017 Apr 24;13(4):e1005498. doi: 10.1371/journal.pcbi.1005498. eCollection 2017 Apr.
5
Inhibitory control of correlated intrinsic variability in cortical networks.
Elife. 2016 Dec 7;5:e19695. doi: 10.7554/eLife.19695.
6
The spatial structure of correlated neuronal variability.
Nat Neurosci. 2017 Jan;20(1):107-114. doi: 10.1038/nn.4433. Epub 2016 Oct 31.
7
Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex.
Neuron. 2016 Oct 19;92(2):530-543. doi: 10.1016/j.neuron.2016.09.038.
8
9
The mechanics of state-dependent neural correlations.
Nat Neurosci. 2016 Mar;19(3):383-93. doi: 10.1038/nn.4242.
10
On the Structure of Neuronal Population Activity under Fluctuations in Attentional State.
J Neurosci. 2016 Feb 3;36(5):1775-89. doi: 10.1523/JNEUROSCI.2044-15.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验