Suppr超能文献

稳定超线性网络分析。

Analysis of the stabilized supralinear network.

机构信息

Center for Theoretical Neuroscience, Department of Neuroscience, and Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

出版信息

Neural Comput. 2013 Aug;25(8):1994-2037. doi: 10.1162/NECO_a_00472. Epub 2013 May 10.

Abstract

We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.

摘要

我们研究了一种由兴奋性和抑制性神经元组成的率型神经网络,其中神经元的输入-输出函数是幂律关系,幂次大于 1,这与初级视觉皮层中的观察结果一致。这种超线性的输入-输出函数导致网络对多个弱输入的响应进行超线性求和。我们表明,对于更强的输入,即会使兴奋性子网不稳定的输入,只要反馈抑制足够强,网络就会动态稳定。对于广泛的网络和刺激参数,这种动态稳定导致网络对多个输入的响应从超线性求和到亚线性求和的转变。我们将其与平衡网络中的动态稳定进行了比较,后者只产生线性行为。我们更详尽地分析了一个兴奋性和一个抑制性群体的二维情况。我们表明,在这种情况下,只要权重矩阵的行列式为正且抑制时间常数足够小,就会发生动态稳定,并分析了超饱和或随着刺激对比度增加(表示输入放电率增加)而放电率降低的条件(这代表大脑皮层处理中的各种非线性)。在其他地方将要展示的工作中,我们发现这种从超线性到亚线性求和的转变可以解释大脑皮层处理中的各种非线性。

相似文献

1
Analysis of the stabilized supralinear network.
Neural Comput. 2013 Aug;25(8):1994-2037. doi: 10.1162/NECO_a_00472. Epub 2013 May 10.
4
Targeting operational regimes of interest in recurrent neural networks.
PLoS Comput Biol. 2023 May 15;19(5):e1011097. doi: 10.1371/journal.pcbi.1011097. eCollection 2023 May.
5
Attentional modulation of firing rate and synchrony in a model cortical network.
J Comput Neurosci. 2006 Jun;20(3):247-64. doi: 10.1007/s10827-006-6358-0. Epub 2006 Apr 22.
6
The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations.
PLoS Comput Biol. 2024 Jun 27;20(6):e1012190. doi: 10.1371/journal.pcbi.1012190. eCollection 2024 Jun.
7
LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback.
J Comput Neurosci. 2010 Dec;29(3):495-507. doi: 10.1007/s10827-009-0190-2. Epub 2009 Oct 28.
9
Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1.
J Neurosci. 2013 Mar 27;33(13):5475-85. doi: 10.1523/JNEUROSCI.4188-12.2013.
10
Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks.
eNeuro. 2018 Apr 17;5(1). doi: 10.1523/ENEURO.0356-17.2018. eCollection 2018 Jan-Feb.

引用本文的文献

1
Exact linear theory of perturbation response in a space- and feature-dependent cortical circuit model.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2426758122. doi: 10.1073/pnas.2426758122. Epub 2025 Jul 29.
2
Theory of interaction between untuned modulatory inputs and tuned sensory inputs.
bioRxiv. 2025 May 2:2025.04.28.651100. doi: 10.1101/2025.04.28.651100.
3
Balanced state of networks of winner-take-all units.
PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.
4
Brain-like variational inference.
ArXiv. 2025 May 16:arXiv:2410.19315v2.
5
The Computational Bottleneck of Basal Ganglia Output (and What to Do About it).
eNeuro. 2025 Apr 24;12(4). doi: 10.1523/ENEURO.0431-23.2024. Print 2025 Apr.
6
Stabilized Supralinear Network Model of Responses to Surround Stimuli in Primary Visual Cortex.
eNeuro. 2025 May 20;12(5). doi: 10.1523/ENEURO.0459-24.2025. Print 2025 May.
8
Subthreshold variability of neuronal populations driven by synchronous synaptic inputs.
bioRxiv. 2025 Mar 16:2025.03.16.643547. doi: 10.1101/2025.03.16.643547.
9
Exact linear theory of perturbation response in a space- and feature-dependent cortical circuit model.
bioRxiv. 2025 Jan 24:2024.12.27.630558. doi: 10.1101/2024.12.27.630558.

本文引用的文献

1
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.
2
How inhibition shapes cortical activity.
Neuron. 2011 Oct 20;72(2):231-43. doi: 10.1016/j.neuron.2011.09.027.
3
Contrast sensitivity of MT receptive field centers and surrounds.
J Neurophysiol. 2011 Oct;106(4):1888-900. doi: 10.1152/jn.00165.2011. Epub 2011 Jul 13.
4
Synchrony in sensation.
Curr Opin Neurobiol. 2011 Oct;21(5):701-8. doi: 10.1016/j.conb.2011.06.003. Epub 2011 Jun 30.
5
A normalization model of multisensory integration.
Nat Neurosci. 2011 Jun;14(6):775-82. doi: 10.1038/nn.2815. Epub 2011 May 8.
6
Power-law input-output transfer functions explain the contrast-response and tuning properties of neurons in visual cortex.
PLoS Comput Biol. 2011 Feb;7(2):e1001078. doi: 10.1371/journal.pcbi.1001078. Epub 2011 Feb 24.
7
Short-term forms of presynaptic plasticity.
Curr Opin Neurobiol. 2011 Apr;21(2):269-74. doi: 10.1016/j.conb.2011.02.003. Epub 2011 Feb 23.
8
Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature. 2010 Jul 1;466(7302):123-7. doi: 10.1038/nature09086.
10
The asynchronous state in cortical circuits.
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验