Yu Peijia, Yang Yuhan, Gozel Olivia, Oldenburg Ian, Dipoppa Mario, Rossi L Federico, Miller Kenneth, Adesnik Hillel, Ji Na, Doiron Brent
Department of Neurobiology, University of Chicago, Chicago, IL, USA.
Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA.
bioRxiv. 2025 Feb 13:2025.02.11.637768. doi: 10.1101/2025.02.11.637768.
In sensory cortex of brain it is often the case that neurons are spatially organized by their functional properties. A hallmark of primary visual cortex (V1) in higher mammals is a columnar functional map, where neurons tuned to different stimuli features are regularly organized in space. However, rodent visual cortex is at odds with this rule and lacks any spatially ordered functional architecture, and rather neuron feature preference is haphazardly organized in patterns termed 'salt-and-pepper'. This sharp contrast in feature organization between the visual cortices of rodents and higher mammals has been a persistent mystery, fueled in part by abundant evidence of conserved cortical physiology between species. In this work, we applied a novel GCaMP indicator that are localized in the nucleus of neurons during two-photon imaging in mouse V1, which enabled us to overcome most spurious spatially correlated activity due to fluorescence contamination, and to ensure a faithful observation of functional organization over space. We found that the orientation tuning properties of distant neuron pairs ( ) are irregularly and randomly organized, while neuron pairs that are extremely close have strongly correlated orientation tuning, indicating a narrow yet strong spatially clustered organization of orientation preference, which we term 'micro-clustered' organization. Exploring a circuit-based model of recurrently coupled mouse V1 we derived two key predictions for the 'micro-cluster': spatially localized recurrent connections over a comparable narrow spatial scale, and common relative spatial spreads of balanced excitation and inhibition in the network over broad spatial scales. These predictions are validated by both anatomical and optogenetic-based physiological circuit mapping experiments. Altogether, our work takes an important step in building a circuit-based theory of visual processing in mouse V1 over spatial scales that are often ignored, yet contain powerful synaptic interactions.
在大脑的感觉皮层中,神经元常常根据其功能特性在空间上进行组织。高等哺乳动物初级视觉皮层(V1)的一个标志是柱状功能图谱,其中对不同刺激特征进行调谐的神经元在空间上有规律地组织起来。然而,啮齿动物的视觉皮层却不符合这一规律,缺乏任何空间有序的功能结构,相反,神经元的特征偏好以一种被称为“椒盐”的模式随机组织。啮齿动物和高等哺乳动物视觉皮层在特征组织上的这种鲜明对比一直是一个持久的谜团,部分原因是物种间皮层生理学保守性的大量证据。在这项工作中,我们应用了一种新型的GCaMP指示剂,它在小鼠V1的双光子成像过程中定位于神经元的细胞核,这使我们能够克服由于荧光污染导致的大多数虚假空间相关活动,并确保在空间上对功能组织进行可靠的观察。我们发现,远距离神经元对( )的方向调谐特性是不规则且随机组织的,而极其接近的神经元对具有强烈相关的方向调谐,这表明存在一种狭窄但强烈的空间聚集的方向偏好组织,我们将其称为“微聚集”组织。通过探索基于回路的小鼠V1递归耦合模型,我们得出了关于“微簇”的两个关键预测:在相当窄的空间尺度上的空间局部递归连接,以及在广泛空间尺度上网络中平衡兴奋和抑制的共同相对空间扩展。这些预测通过解剖学和基于光遗传学的生理回路线图实验得到了验证。总之,我们的工作在构建基于回路的小鼠V1视觉处理理论方面迈出了重要一步,该理论涉及到通常被忽视但包含强大突触相互作用的空间尺度。