Center for Bioactive Products, Northeast Forestry University/Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Harbin 150040, China.
State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Theranostics. 2018 Apr 9;8(10):2683-2695. doi: 10.7150/thno.23654. eCollection 2018.
Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. The immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.
多药耐药(MDR)对癌症治疗构成了巨大挑战。由于其化学抗性,抑制 MDR 癌症的生长变得困难。此外,MDR 癌症更有可能转移,导致癌症患者死亡率高。在这项研究中,通过将黑色素纳米颗粒(MNPs)和阿霉素(DOX)封装在 RGD 肽(c(RGDyC))修饰的纳米级血小板囊泡(RGD-NPVs)内,开发了一种纳米医学 RGD-NPVs@MNPs/DOX,通过癌细胞和肿瘤血管双重靶向策略,有效地抑制耐药肿瘤的生长和转移。使用 RAW264.7、HUVECs、MDA-MB-231 和 MDA-MB-231/ADR 细胞系检查了 RGD-NPVs@MNPs/DOX 的免疫逃逸潜力和靶向性能。还使用 MDA-MB-231/ADR 荷瘤裸鼠模型评估了 RGD-NPVs@MNPs/DOX 的药代动力学行为和治疗性能。利用血小板膜的自识别特性和共轭的 RGD 肽,发现 RGD-NPVs@MNPs/DOX 能够逃避免疫清除,并靶向肿瘤血管和耐药乳腺癌细胞上的αvβ3 整合素。在近红外激光照射下,RGD-NPVs@MNPs/DOX 产生了多种效应,包括逆转癌症 MDR、通过化学光热疗法有效杀死耐药细胞、消除肿瘤血管以阻止转移,以及长期抑制肿瘤内 VEGF、MMP2 和 MMP9 的表达。这种多功能纳米医学 RGD-NPVs@MNPs/DOX 将独特的仿生特性、优异的靶向性能和全面的治疗策略整合在一个制剂中,为 MDR 癌症治疗带来了机会。