Department of Chemistry , The University of Texas at Dallas , Richardson , Texas 75080 , United States.
Bioconjug Chem. 2018 Jun 20;29(6):1841-1846. doi: 10.1021/acs.bioconjchem.8b00202. Epub 2018 May 18.
Fundamental understanding of how the hydrophobicity impacts cellular interactions of engineered nanoparticles is critical to their future success in healthcare. Herein, we report that inserting hydrophobic octanethiol onto the surface of zwitterionic luminescent glutathione coated gold nanoparticles (GS-AuNPs) of 2 nm enhanced their affinity to the cellular membrane and increased cellular uptake kinetics by more than one order of magnitude, rather than inducing the accumulation of the AuNPs in the bilayer core or enhancing their passive diffusion. These studies highlight the diversity and heterogeneity in the hydrophobicity-induced nano-bio interactions at the cellular level and offer a new pathway to expediting cellular uptake of engineered nanoparticles. In addition, the amphiphilic luminescent AuNPs with high affinity to cell membrane and rapid endocytosis potentially serve as dual-modality imaging probes to correlate fluorescence and electron microscopies at the cellular level.
深入理解疏水性如何影响工程纳米粒子与细胞的相互作用,对于它们在医疗保健领域的未来成功至关重要。在此,我们报告称,在带负电荷的发光谷胱甘肽包裹的金纳米粒子(GS-AuNPs)表面插入疏水性辛硫醇,增强了它们与细胞膜的亲和力,并使细胞摄取动力学提高了一个数量级以上,而不是诱导 AuNPs 在双层核心中积累或增强它们的被动扩散。这些研究强调了在细胞水平上疏水性诱导的纳米生物相互作用的多样性和异质性,并为加速工程纳米粒子的细胞摄取提供了新途径。此外,具有高细胞膜亲和力和快速内吞作用的两亲性发光 AuNPs 可作为双模式成像探针,在细胞水平上关联荧光和电子显微镜。